迴旋動理學
迴旋動理學(gyrokinetics)是在磁化電漿當中,帶電粒子的軌跡是一個圍繞磁力線的螺旋運動。它可以解耦為一個快速的迴旋運動和和一個相對來說比較慢的導心運動。對於等體中的許多問題,只需要考慮後者就已經足夠了。不論是傳統的迴旋平均,還是現在的李坐標變換,由於去除了不必要的迴旋相位角這一維數,使得計算得到了簡化。
迴旋動理學方程的導出先是弗拉索夫方程和麥克斯韋方程
使用變換坐標和迴旋平均的方法,就得到迴旋動理學方程
(x, v ) →( R, μ, U)
或者用李群變換。
Rosenbluth & Simon (1965) ― moment equations are simplest in terms of the drift velocity
Rutherford & Frieman (1968); Taylor & Hastie (1968) ― linearized GKs in general geometry
Hinton & Horton (1971) ― gyroviscous cancellation
Catto (1978) ― do transformation to guiding-center variables first!
Littlejohn (1979�82) ― noncanonical Hamiltonian techniques
Frieman & Chen (1982) ― first nonlinear GKE
Lee (1983) ― modern form of the GK-Poisson system; GK particle simulation
Dubin, Krommes, Oberman, & Lee (1983) ― self-consistent Hamiltonian GKs
Littlejohn (1983) and Cary & Littlejohn (1983) ― Lagrangian methods; Noether’s theorem
Krommes, Lee, & Oberman (1986) ― GK noise
Hahm (1988) ― GKs via the one-form method
Sugama (2000); Brizard (2000) ― variational principle; gyrokinetic field theory
Parra (2008) ― dissertation on GK momentum conservation
Schekochihin et al. (2009) ― astrophysical GKs
Plunk et al. (2010) ― GK entropy cascade
Zhu & Hammett (2010) ― absolute GK statistical equilibria
Scott & Smirnov (2010) ― GK conservation law for toroidal angular momentum
……
Particle-in-cell (PIC):
GTC ― Lin et al. (1998)
GEM ― Chen & Parker (2003)
GTS ― Wang et al. (2006)
ORB5 ― Jolliet et al. (2007)
XGC1 ― Chang et al. (2009)
Continuum (Vlasov):
GS2 ― Dorland et al. (2000) [based on the linear code of
Kotschenreuther et al. (1995); see also the AstroGK code of
Numata et al. (2010)]
GENE ― Jenko et al. (2000)
GYRO ― Candy & Waltz (2003)
GT5D ― Idomura et al. (2008)
Hybrid (semi-Lagrangian):
GYSELA ― Grandgirard et al. (2006)