趙育林

趙育林

人物簡介 男,陝西省合陽縣人,理學博士、教授、博士生導師, 廣東省高等學校“千百十工程”培養對象,2007年入選教育部新世紀優秀人才支持計畫。

基本信息

人物經歷

1989年9月至1992年7月在華中師範大學讀書,獲理學碩士學位,研究方向為常微分方程定性理論,導師為梁肇軍教授。

1998年7月畢業於北京大學數學科學學院,獲理學博士學位,研究方向為向量場分支理論,導師為張芷芬教授。

1998年7月至2000年6月在中山大學做博士後。2000年被聘為副教授並留校任教至今,2006年被聘為教授、博士生導師。

2000年11月至12月受G.Villari教授之邀在義大利佛羅倫斯大學數學系訪問。

2002年7月至12月在加拿大Universite des Montreal做博士後,期間曾在York University訪問一個月。

2003年4月至2004年4月在以色列Weizmann Institute of Science 做博士後。

2006年11月至2007年10月受西班牙教育部基金資助,訪問Universitat Autonoma de Barcelona數學系,與 J. Llibre 教授和A. Gasull教授合作,從事代數極限環和周期單調性的研究工作。

1995--1998 北京大學數學科學學院,理學博士

1989--1992 華中師範大學數學系, 理學碩士

1985--1989 寶雞師範學院數學系, 學士

1982--1985 陝西省大荔師範學校

1982年前:在原籍讀國小、國中

研究方向

向量場分支理論、常微分方程及其套用。

主要貢獻

學術成果

近幾年來,趙育林教授一直從事向量場分支理論和周期單調性的研究工作,已在J. Differential Equation、Nonlinearity、中國科學(英文版)等雜誌發表文章二十餘篇(包括與別人合作的文章)。先後主持國家自然科學基金三項(2002-2004;2006-2008;2009-2011)、廣東省自然科學基金兩項(2001-2003,2005-2006)、教育部留學回國人員啟動基金一項。

科研項目

1、二維球面上多項式向量場的幾何性質與分支問題, 國家自然科學基金,No. 10871214, 2009-2011。

2、教育部新世紀優秀人才支持計畫,NCET-07-0888, 2008—2010。

3、可積系統的閉軌分支及相關問題,國家自然科學基金,No. 10571184, 2006-2008。

4、平面二次系統的極限環分支,教育部留學回國人員科研啟動基金, 2006-2008。

5、多項式系統的周期單調性問題,廣東省自然科學基金, No. 04009794, 2005-2006。

6、二次可積系統的弱Hilbert十六問題,國家自然科學基金,No. 10101031, 2002-2004。

7、弱化的Hilbert十六問題,廣東省自然科學基金,No. 001289, 2001-2003。

8、多項式動力系統的周期單調性問題,高等學術中心基金,2005-2006。

9、二次可積系統的分支問題,中山大學青年教師科研啟動基金,2000.9-2003.12。

主要學術論文

[1] Yulin Zhao, On the number of zeros of Abelian integrals for a polynomial Hamiltonian irregular at infinity, J. Differential Equations 209(2005),No.2,329-364.

[2] Yulin Zhao, On the monotonicity of the period function of a quadratic system, Discrete and Continuous Dynamical Systems 13(2005),No.3, 795-810.

[3] Yulin Zhao, The monotonicity of period function for codimension four quadratic system , J.Differential Equation 185(2002), No.1,370-387.

[4] Yulin Zhao, Zhaojun Liang and Gang Lu, The cyclicity of the period annulus of the quadratic Hamiltonian system with non-Morsean point, J. Differential Equations 162( 2000),199-223.

[5] Yulin Zhaoand Zhifen Zhang, Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations 155(1999),73-88.

相關詞條

相關搜尋

熱門詞條

聯絡我們