圖書信息
出版社: 人民教育出版社; 第1版 (2008年1月1日)
外文書名: Computational Conformal Geometry
精裝: 510頁
正文語種: 簡體中文
開本: 16
ISBN: 9787040231892
條形碼: 9787040231892
尺寸: 24 x 17 x 2 cm
重量: 558 g
內容簡介
《計算共形幾何(英文版)》是首次對中國基礎教育均衡發展作理論和實證研究的專著。以廣闊的理論視野,首次從巨觀、中觀、微觀三個維度、十五個內涵指標分析入手,對教育均衡發展進行深入的理論探索和科學闡釋,提出了具有獨到見解的教育均衡發展理論體系。構建了教育均衡發展的基本體系框架,首次提出了基礎教育均衡發展四個階段的發展理論。首次把指數引入教育均衡分析,構建了分析研究教育均衡發展的指數體系和教育均衡發展指數。基礎教育均衡發展是現代教育發展的新境界,是教育未來發展的方向。
目錄
Introduction
1.1 Overview of Theories
1.1.1 RiemannMapping
1.1.2 Riemann Uniformization
1.1.3 Shape Space
1.1.4 General Geometric Structure
1.2 Algorithms for Computing Conformal Mappings
1.3 Applications
1.3.1 Computer Graphics
1.3.2 Computer Vision
1.3.3 Geometric Modeling
1.3.4 Medical Imaging
Further Readings
Part I Theories
Homotopy Group
2.1 Algebraic Topological Methodology
2.2 Surface Topological Classification
2.3 Homotopy of Continuous Mappings
2.4 Homotopy Group
2.5 Homotopy Invariant
2.6 Covering Spaces
2.7 Group Representation
2.8 Seifert-van Kampen Theorem
Problems
Homology and Cohomology
3.1 Simplicial Homology
3.1.1 Simplicial Complex
3.1.2 Geometric Approximation Accuracy
3.1.3 Chain Complex
3.1.4 Chain Map and Induced Homomorphism
3.1.5 Simplicial Map
3.1.6 Chain Homotopy
3.1.7 Homotopy Equivalence
3.1.8 Relation Between Homology Group and Homotopy Grou
3.1.9 Lefschetz Fixed Point
3.1.10 Mayer-Vietoris Homology Sequence
3.1.11 Tunnel Loop and Handle Loop
3.2 Cohomology
3.2.1 Cohomology Group
3.2.2 Cochain Map
3.2.3 Cochain Homotopy
Problems
4 Exterior Differential Calculus
4.1 Smooth Manifold
4.2 Differential Forms
4.3 Integration
4.4 Exterior Derivative and Stokes Theorem
4.5 De Rham Cohomology Group
4.6 Harmonic Forms
4.7 Hodge Theorem
Problems
5 Differential Geometry of Surfaces
5.1 Curve Theory
5.2 Local Theory of Surfaces
5.2.1 Regular Surface
5.2.2 First Fundamental Form
5.2.3 Second Fundamental Form
5.2.4 Weingarten Transformation
5.3 Orthonormal Movable Frame
5.3.1 Structure Equation
5.4 Covariant Differentiation
5.4.1 geodesic Curvature
5.5 Gauss-Bonnet Theorem
5.6 Index Theorem of Tangent Vector Field
5.7 Minimal Surface
5.7.1 Weierstrass Representation
5.7.2 Costa Minimal Surface
Problems
Riemann Surface
6.1 Riemann Surface
6.2 Riemann Mapping Theorem
6.2.1 Conformal Module
6.2.2 Quasi-Conformal Mapping
6.2.3 Holomorphic Mappings
6.3 Holomorphic One-Forms
6.4 Period Matrix
6.5 Riemann-Roch Theorem
6.6 Abel Theorem
6.7 Uniformization
6.8 Hyperbolic Riemann Surface
6.9 Teichmiiller Space
6.9.1 Quasi-Conformal Map
6.9.2 Extremal Quasi-Conformal Map
6.10 Teichm011er Space and Modular Space
6.10.1 Fricke Space Model
6.10.2 Geodesic Spectrum
Problems
Harmonic Maps and Surface Ricci Flow
7.1 Harmonic Maps of Surfaces
7.1.1 Harmonic Energy and Harmonic Maps
7.1.2 Harmonic Map Equation
7.1.3 Rad6's Theorem
7.1.4 Hopf Differential
7.1.5 Complex Form
7.1.6 Bochner Formula
7.1.7 Existence and Regularity
7.1.8 Uniqueness
7.2 Surface Ricci Flow
7.2.1 Conformal Deformation
7.2.2 Surface Ricci Flow
Problems
Geometric Structure
8.1 (X, G) Geometric Structure
8.2 Development and Holonomy
8.3 Affine Structures on Surfaces
8.4 Spherical Structure
8.5 Euclidean Structure
8.6 Hyperbolic Structure
8.7 Real Projective Structure
Problems
Part II Algorithms
Topological Algorithms
9.1 Triangular Meshes
9.1.1 Half-Edge data structure
9.1.2 Code Samples
9.2 Cut Graph
9.3 Fundamental Domain
9.4 Basis of Homotopy Group
9.5 Gluing Two Meshes
9.6 Universal Covering Space
9.7 Curve Lifting
9.8 Homotopy Detection
9.9 The Shortest Loop
9.10 Canonical Homotopy Group Generator
Further Readings
Problems
10 Algorithms for Harmonic Maps
10.1 Piecewise Linear Functional Space, Inner Product and Laplacian
10.2 Newton's Method for Open Surface
10.3 Non-Linear Heat Diffusion for Closed Surfaces
10.4 Riemann Mapping
10.5 Least Square Method for Solving Beltrami Equation
10.6 General Surface Mapping
Further Readings
Problems
11 Harmonic Forms and Holomorphic Forms
11.1 Characteristic Forms
11.2 Wedge Product
11.3 Characteristic 1-Form
11.4 Computing Cohomology Basis
l1.5 Harmonic 1-Form
11.6 Hodge Star Operator
11.7 Holomorphic 1-Form
11.8 Inner Product Among 1-Forms
11.9 Holomorphic Forms on Surfaces with Boundaries
11.10 Zero Points and Critical Trajectories
11.11 Flat Metric Induced by Holomorphic 1-Forms
11.12 Conformal Invariants
11.13 Conformal Mappings for Multi-Holed Annuli
Further Readings
Problems
12 Discrete Ricci Flow
12.1 Circle Packing Metric
12.2 Discrete Gaussian Curvature
12.3 Discrete Surface Ricci Flow
12.4 Newton's Method
12.5 isometric Planar Embedding
12.6 Surfaces with Boundaries
12.7 Optimal Parameterization Using Ricci Flow
12.8 Hyperbolic Ricci Flow
12.9 Hyperbolic Embedding
12.9.1 Poincare Disk Model
12.9.2 Embedding the Fundamental Domain
12.9.3 Hyperbolic Embedding of the Universal Covering Space
12.10 Hyperbolic Ricci Flow for Surfaces with Boundaries
Further Readings
Problems
A Major Algorithms
B Acknowledgement
Reference
Index