絕對零度

絕對零度

絕對零度(absolute zero)是熱力學的最低溫度,但此為僅存於理論的下限值。其熱力學溫標寫成K,等於攝氏溫標零下273.15度(-273.15℃)。物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分布,粒子動能越大,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。絕對零度,是不可能達到的最低溫度,但是自然界的溫度只能無限逼近,不能夠達到,如果到達,那么一切事物都將達到運動的最低形式。在絕對零度下,原子和分子擁有量子理論允許的最小能量。

基本信息

基本簡介

絕對零度的溫度圖線絕對零度的溫度圖線

物質的溫度取決於其內原子分子等粒子的動能。根據麥克斯韋-玻爾茲曼分布,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。

在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。

有關物質接近絕對零度時的行為,可初步觀察熱德布洛伊波長(Thermal de Broglie wavelength)。

其中h為普朗克常數、m為粒子的質量、k為玻爾茲曼常量、T為絕對溫度

可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是玻色-愛因斯坦凝聚,玻色-愛因斯坦凝聚在1995年首次被實驗證實,當時溫度降至只有170×10^(-9)開爾文

詳細內容

絕對零度其中h為普朗克常數、m為粒子的質量、k為玻爾茲曼常量、T為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是玻色-愛因斯坦凝聚,玻色-愛因斯坦凝聚在1995年首次被實驗證實,當時溫度僅有開爾文。
①在中學階段,對於熱力學溫標和攝氏溫標間的換算,是取近似值T(K)=t(℃)+273。實際上,如以水的冰點為標準,絕對零度應比它低273.15℃所以精確的換算關係應該是T(K)=t(℃)+273.15。
②絕對零度是根據理想氣體所遵循的規律(即理想氣體狀態方程,pV=mRT/M=mrT,r=R/M),用外推的方法得到的。用這樣的方法,當溫度降低到-273.15℃時,氣體的體積減小到零。如果從分子運動論的觀點出發,理想氣體分子的平均平動動能由溫度T確定,那么也可以把絕對零度說成是“理想氣體分子停止運動時的溫度”。以上兩種說法都只是一種理想的推理。事實上一切實際氣體在溫度接近-273.15℃時,表現出明顯的量子特性,這時氣體早已變成液態或固態。總之,氣體分子的運動已不再遵循經典物理的熱力學統計規律。通過大量實驗以及經過量子力學修正後的理論導出,在接近絕對零度的地方,分子的動能趨於一個固定值,這個極值被叫做零點能量。這說明絕對零度時,分子的能量並不為零,而是具有一個很小的數值。原因是,全部粒子都處於能量可能有的最低的狀態,也就是全部粒子都處於基態。

③由於水的三相點溫度是0.0076℃,因此絕對零度比水的三相點溫度低273.16℃。
絕對零度表示那樣一種溫度,在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動。還包括某些形式的電子運動,然而它並不包括量子力學概念中的“零點運動”。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的這些運動是肉眼看不見的,但是我們會看到,它們決定了物質的大部分與溫度有關的性質。正如一條直線僅由兩點連成的一樣,一種溫標是由兩個固定的且可重複的溫度來定義的。最初,在一標準大氣壓(760毫米水銀柱,或760托)時,攝氏溫標是定冰之熔點為0℃和水之沸點為100℃,絕對溫標是定絕對零度為0K和冰之熔點為273K,這樣,就等於有三個固定點而導致溫度的不一致,因為科學家希望這兩種溫標的度數大小相等,所以,每當進行關於這三點的相互關係的準確實驗時,總是其中一點的數值改變達百分之一度。,僅有一固定點獲得國際承認,那就是水的“三相點”。1948年確定為273.16K,即絕對零度以上273.16度。當蒸氣壓等於一大氣壓時,水的正常冰點略低,為273.15K(=0℃=32°F),水的正常沸點為373.15K(=100℃=212°F)。這些以攝氏溫標表示的固定點和其他一些次要的測溫參考點(即所謂的國際實用溫標)的實際值,以及在實驗室中為準確地獲得這些值的度量方法,均由國際權度委員會定期公布。
科學家在對絕對零度的研究中,發現了一些奇妙的現象。如氦本是氣體(氦是自然界中最難液化的物質),在-268.9℃時變成液體,當溫度持續降低時,原本裝在瓶子裡的液體,卻輕而易舉地從只有0.01毫米的縫隙中,很容易地溢到瓶外去了,繼而出現了噴泉現象,液體的粘滯性也消失了。
絕對零度物體的溫度實際上就是原子在物體內部的運動。當我們感到一個物體比較熱的時候,就意味著它的原子在快速運動:當我們感到一個物體比較冷的時候,則意味著其內部的原子運動速度較慢。我們的身體是通過熱或冷來感覺這種運動的,而物理學家則是絕對溫標或稱開爾文溫標來測量溫度的。
按照這種溫標測量溫度,絕對溫度零度(0K)相當於攝氏零下273.15度(-273.15℃)被稱為“絕對零度”,是自然界中可能的最低溫度。在絕對零度下,原子的運動完全停止了,那么就意味著我們能夠精確地測量出粒子的速度(0)。然而1890年德國物理學家馬克斯·普朗克引入的了普朗克常數表明這樣一個事實:粒子的速度的不確定性、位置的不確定性的乘積一定不能小於普朗克常數,這是我們生活著的宇宙所具有的一個基本物理定律(海森堡不確定關係)。那么當粒子處於絕對零度之下,運動速度為零時,與這個定律相悖,因而我們可以在理論上得出結論,絕對零度是不可以達到的。
自然界最冷的地方是在回力棒星雲。那裡的溫度為零下272攝氏度,是目前所知自然界中最寒冷的地方,成為“宇宙冰盒子”。事實上,布莫讓星雲的溫度僅比絕對零度(零下273.15℃)攝氏度高1度多。 這個“熱度”(因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。
事實上,在這樣的非常溫度下,物質呈現的既不是液體狀態,也不是固體狀態,更不是氣體狀態,而是聚集成唯一的“超原子”,它表現為一個單一的實體。
19世紀中期,開爾文男爵威廉·湯姆森定義了絕對溫度,在此規定下沒有物質的溫度能低於絕對零度。氣體的絕對溫度與它所包含粒子的平均能量有關,溫度越高,平均能量越高,而絕對零度是氣體的所有粒子能量都為零的狀態,這是一種理想的理論狀態。到了上世紀50年代,物理學家在研究中遇到了更多反常的物質系統,發現這一理論並不完全正確。
在正常溫度下,這種逆轉是不穩定的,原子會向內坍塌。他們也同時調整勢阱雷射場,增強能量將原子穩定在原位。
現任美國麻省理工大學物理教授科特勒稱此最新成果為一項“實驗的絕技”。在實驗室里,反常高能態在正溫度下很難產生,而在負絕對溫度下卻會變得穩定——“就像你能把一個金字塔倒過來穩穩的放著,而不必擔心它會倒。”克特勒指出,該技術使人們能詳細研究這些反常高能態,“也可能成為創造新物質形式的一條途徑。”

研究簡史

絕對零度韓國絕對零度熱管散熱器

1848年,英國科學家威廉·湯姆遜·開爾文勳爵(1824-1907)建立了一種新的溫度標度,稱為絕對溫標,它的量度單位稱為開爾文(K)。

1890年德國物理學家馬克斯·普朗克引入的了普朗克常數表明這樣一個事實:粒子的速度的不確定性、位置的不確定性的乘積一定不能小於普朗克常數,這是我們生活著的宇宙所具有的一個基本物理定律(海森堡不確定關係)。

1995年,科羅拉多大學美國國家標準研究所的兩位物理學家愛里克·科內爾和卡爾威曼成功地使一些銣原子達到了令人難以置信的溫度,即達到了絕對零度之上的十億分之二十度(2×10^-8K)。

真空零點能

在絕對零度下,任何能量都應消失。可就是在絕對零度下,依然有一種能量存在,這就是真空零點能。
真空零點能,因在絕對零度下發現粒子的振動而得名。這是量子真空中所蘊藏著的巨大本底能量。海森堡不確定性原理指出:不可能同時以較高的精確度得知一個粒子的位置和動量。因此,當溫度降到絕對零度時粒子必定仍然在振動;否則,如果粒子完全停下來,那它的動量和位置就可以同時精確的測知,而這是違反測不準原理的。這種粒子在絕對零度時的振動(零點振動)所具有的能量就是零點能。
量子真空是沒有任何實物粒子的物質狀態,其場的總能量處於最低,這是一切物質運動及能量場的最初始狀態,它的溫度自然處於絕對零度。這樣的狀態具有無限變化的潛在能力。零點能就是由(量子真空中)虛粒子,不斷產生的一對反粒子的出現和湮滅產生的。據推測,量子真空中,每立方厘米包含的能量密度有焦耳。
從理論上看,真空能量以粒子的形態出現,並不斷以微小的規模形成和消失。真空中充滿著幾乎各種波長的粒子,但卡西米爾認為,如果使兩個不帶電的金屬薄盤緊緊靠在一起,較長的波長就會被排除出去。接著,金屬盤外的其他波就會產生一種往往使它們相互聚攏的力,金屬盤越靠近,兩者之間的吸引力就越強。1996年,物理學家首次對這種所謂的卡西米爾效應進行了測定。這是證明真空零點能存在的確鑿證據。

負溫度

低溫下超導體產生的磁浮現象低溫下超導體產生的磁浮現象

在常用的攝式或華式溫標下,以負數形式表示的溫度只是單純的比此兩種表示方式下的0度更低的溫度。某些特定的系統(英語:Thermodynamic system)可以達到真正意義下的負溫度。也就是說,其熱力學定義下的溫度(以熱力學溫標表示)可以是一個負的值。一個具有負溫度的系統並不是說它比絕對零度更冷。洽洽相反,從感官上來講,具有負溫度的系統比任意一個具有正溫度的系統都更熱一些。也就是說,當分別具有正負溫度的兩個系統接觸時,熱量會由負溫度系統流向正溫度系統。

大多數常見的系統都無法達到負溫度,因為增加能量也會使得它們的增加的。但是,某些系統存在能量持有的上限,當能量達到這個上限時,它們的熵實際上會減少。因為溫度是由能量和熵之間的關係來定義的,所以即使能量在不停的增加,這個系統的溫度仍會變成負值。 所以,當能量增加時,對於處於負溫度的系統,描述其狀態的玻爾茲曼因子會增大而不是減小。因此,沒有一個完備的系統——包括電磁系統——能夠達到負溫度,這是因為能量狀態不會達到最大,所以不會有負溫度出現。但是,對於準均衡系統(如因自鏇而導致不均衡的電磁場)這一理論並不適用,所以準均衡系統是可能達到負溫度的。

逼近技術

和外太空宇宙背景輻射的3K溫度做比較,實現玻色-愛因斯坦凝聚的溫度170×10^(-9)K遠小於3K,可知在實驗上要實現玻色-愛因斯坦凝聚是非常困難的。要製造出如此極低的溫度環境,主要的技術是雷射冷卻和蒸發冷卻。

(1)雷射冷卻
(2)蒸發冷卻

溫度紀錄

2003年09月12日,由德國、美國、奧地利等國科學家組成的一個國際科研小組,日前改寫了人類創造的最低溫度紀錄:他們在實驗室內達到了僅僅比絕對零度高0.5納開爾文的溫度,而此前的紀錄是比絕對零度高3納開。這是人類歷史上首次達到絕對零度以上1納開以內的極端低溫。

最冷之地

最接近絕對零度的地方
智利天文學家發現了宇宙最冷之地,這個宇宙最冷之地就叫做“回力棒星雲”,這裡的溫度只比絕對零度高1開爾文,約零下272攝氏度,是“宇宙中已知的最冷天體”。科學家稱,在絕對零度條件下,所有的原子都幾乎凍結,“回力棒星雲”是已知的最接近絕對零度的地方。

最新研究

2013年1月5日(台北時間)據《自然》雜誌網站報導,物理學家們近期真的製造出了一種原子氣體,其溫度低於絕對零度。他們所開創的這項技術將有望創造出具有“負溫度”的物質材料並發展出相應的新型量子態,甚至還將有可能解答有關我們這個宇宙的基本謎團。

2014年2月,美國航天局宣布,正在為空間站打造一個原子“冰櫃”,這一實驗設備將可以創造100微微開爾文的極端低溫,也就是比絕對零度(零下273.15攝氏度)高出100億分之一攝氏度。

這個原子“冰櫃”的全稱為“冷原子實驗室”,計畫於2016年送至空間站上使用。項目科學家在一份聲明中說:“我們計畫在比正常情況寒冷得多的溫度下研究物質,我們的目標是將有效溫度降至100微微開爾文。”

相關搜尋

熱門詞條

聯絡我們