個人簡介
王應前,浙江師範大學數理信息學院教授。
研究方向
圖的連通性和圖的染色理論
主講課程
數學分析
科研項目
1. 參與國家自然科學基金面上項目3項,省自然科學基金面上項目1項。
2. 主持省教育廳自然科學基金重點項目一項: 項目名稱:可平面圖的3可選擇性研究與套用 項目編號:20070441 研究日期:2008.1-2009.12(已結題)
3. 主持省自然科學基金面上項目一項: 項目名稱:平面圖的3染色和全染色 項目編號:Y6090699 研究日期:2010.1-2010.12 (進行中)
論文著作
1. SCI論文目錄 In Science China 1. Yingqian Wang, Qijun Zhang, On 3-choosability of triangle-free plane graphs, Science China Mathematics, 2011,Accepted.
2. WANG YingQian, MAO XiangHua, Lu HuaJing & Wang WeiFan, On 3-colorability of planar graphs without adjacent short cycles, Science China Mathematics, April 2010 Vol.53.
3. SHEN Lan & WANG YingQian, Total colorings of planar graphs with maximum degree at least 8, Science in China series A: Mathematics, Aug., 2009, Vol. 52.
4. Ying-qian WANG, Min-le SHANGGUAN & Qiao LI, On total chromatic number of planar graphs without 4-cycles, Science in China series A: Mathematics, Jan., 2007, Vol. 50.
5. WANG Yingqian, Optimization problems of the third edge-connectivity of graphs, Science in China: Series A Mathematics, 2006 Vol.49.
6 WANG Yingqian & LI Qiao, Upper bound of the third edge-connectivity of graphs, Science in China Ser. A Mathematics, 2005 Vol. 48.
7. Yingqian Wang, Qijun Zhang, Decomposing a planar graph with girth at least 8 into a forest and a matching, Discrete Math., 2011, accepted
8 Yingqian Wang, Huajing Lu, Ming Chen, Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable, Discrete Math., 310 (2010).
9 Lan Shen, Yingqian. Wang, Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable, Discrete Math., 310 (2010).
10. Huajing Lu, Yingqian Wang, Weifan Wang et al., On the 3-colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math., 309 (2009).
11. Yongzhu Chen, Yingqian Wang, On the diameter of generalized Kneser graphs, Discrete Math, 308 (2008) .
12. Yingqian Wang, Ming Chen, Liang Shen, Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable, Discrete Math., 308 (2008) .
13 Ying Qian Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete Math, 289 (2004).
14. Jingwen Zhang, Yingqian Wang, (-total-colorability of plane graphs with maximum degree at least 6 and without adjacent short cycles, Inform. Process. Lett., 110 (2010) 830-834.
15. Yingqian Wang, Huajing Lu, Ming Chen, A note on 3-choosability of planar graphs. Inform. Process. Lett., 105 (2008) 206-211.
17. Mickael Montassier, Andre Raspaud, Weifan Wang, Yingqian Wang, A relaxation of Havel’s 3-color problem, Inform. Process. Lett., 107 (2008) 107-109.
18. Liang Shen, Yingqian Wang, A sufficient condition for a planar graph to be 3-choosable, Inform. Process. Lett., 104 (2007) 146-151.
19. Yingqian Wang, Qian Wu, Liang Shen, Planar graphs without cycles of length 4, 7, 8 or 9 are 3-choosable, Discrete Applied Math. 159 (2011) 232-239.
20. Dingzhu Du, Lan Shen, Yingqian Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, Discrete Applied Mathematice, 157 (2009) 2778-2784.
21. Lan Shen, Yingqian Wang, Weifan Wang, Ko-Wei Lih, On the 9-total colorability of planar graphs with maximum degree 8 and without intersecting triangles, Applied Mathematics Letters, 22 (2009) 1369-1373.
22. Lan Shen, Yingqian Wang, On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles, Graphs and Combinatorics , (2009) 25: 401-407.
23. Huiyu Sheng, Yingqian Wang, A structural theorem of planar graphs with some applications, Discrete appl. Math. 2011, accepted subject to minor revesion.