歸謬式推理

歸謬式推理

歸謬式推理(inference with absurdity)是一種間接推理,是由兩個前件相同,後件相矛盾的充分條件假言命題為前提,從而推出與這兩個假言命題的前件相矛盾的命題的推理。例如:如果一切判斷都是假的,則世界上沒有真的判斷;如果一切判斷都是假的,則世界上沒有真的判斷也假,所以,並非一切判斷都是假的 。

基本信息

基本概念

歸謬式推理(inference with absurdity)是這樣一種推理,它的前提是兩個充分條件假言判斷,其前件相同,後件相矛盾,而結論是與這兩個假言判斷的前件相矛盾的判斷。例如:

如果大前提特稱,小前提否定能得出結論,那么大前提中的大項應該周延;

如果大前提特稱,小前提否定能得出結論,那么大前提中的大項不能周延;

所以,大前提特稱,小前提否定不能得出結論 。

歸謬式推理的邏輯形式

歸謬式推理的邏輯形式表示如下 :

如果p,那么q

如果p,那么非q

所以,非p

或用公式表示為:

歸謬式推理 歸謬式推理

或者

如果非p,那么q

如果非p,那么非q

所以,p。

歸謬式推理的套用與舉例

歸謬式推理形式在論證中經常使用,當我們反駁某一判斷時,可以先假設這個判斷是真的,並從這種假設中同時引伸出兩個相矛盾的判斷,再從這兩個判斷的矛盾性推出被反駁的判斷必然是假的。比如,有人認為“一切判斷都是假的”。我們就可以用歸謬式推理來駁斥他,先假設這個判斷是真的,即如果“一切判斷是假的”這一判斷是真的,那么“一切判斷都是假的”;如果“一切判斷都是假的”這一判斷是真的,那么“並非一切判斷都是假的”(有的判斷不是假的),所以,“一切判斷都是假的”不是真的

【例1】如果張三作案,那么李四一定是主犯;如果張三沒作案,那么王五參與作案。如果李四不是主犯,那么王五沒有參與作案 。

由此可推出以下哪項?

A.張三沒作案

B.李四一定是主犯

C.李四不一定是主犯

D.王五參與作案

E.張三作案

解析:

首先把題乾中第一句話“如果張三作案,那么李四一定是主犯”變為:“如果李四不是主犯,那么張三沒作案”;再與題乾中的第二句話“如果張三沒作案,那么王五參與作案”進行推理得:“如果李四不是主犯,那么王五參與作案”;這樣與第三句話:“如果李四不是主犯,那么王五沒有參與作案”構成歸謬式推理,即:

如果李四不是主犯,那么王五參與作案,

如果李四不是主犯,那么王五沒有參與作案,

所以,李四是主犯 。

【例2】義大利物理學家伽利略推翻古代“物體下落速度與重量成正比”(p)這一錯誤理論時運用的就是歸謬式推理。伽利略設計了一個實驗:A、B兩塊石頭,並且A重於B,把A、B兩塊石頭捆在一起,據此進行推導:

如果p成立。因A+B比A重,那么,A+B的下落速度比A快(用q表示);

如果p成立,因速度小的B加在速度大的A上會減低A的速度,

那么,A+B的下落速度比A慢(這就是非q);

所以,p不成立。(即“物體下落速度與重量成正比”這一理論是錯誤的) 。

相關詞條

熱門詞條

聯絡我們