基本介紹
![次線性函式](/img/5/537/nBnauM3XwYDOykTO3YDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzLzgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
有一類特別重要的凸函式 ,稱為 次線性函式,它滿足
![次線性函式](/img/c/c41/nBnauM3X2EDO3ADN4AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
( 正齊次性);
![次線性函式](/img/5/b70/nBnauM3XwEjMzcTN3cjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![次線性函式](/img/7/b0c/nBnauM3XxQDOyUzMwYDMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2AzL2UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
,( 次可加性)。
![次線性函式](/img/a/e83/nBnauM3X2ADN4ITM3IzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLyMzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/5/4d8/nBnauM3X2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/d/900/nBnauM3XyYDMyYzN2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzLwczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![次線性函式](/img/5/4d8/nBnauM3X2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
任何線性形式(函式)當然都是 次線性函式。反之,易證:如果 ,且 和 都是次線性函式,那么 一定是線性函式。
相關性質
![次線性函式](/img/5/4d8/nBnauM3X2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/3/67f/nBnauM3XzEDO2AjMzUzM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1MzLxMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
次線性函式必定是凸函式;於是次線性函式本質上也將是仿射函式族的上包絡。但由於次線性函式 還一定滿足 等條件,我們還能得到更強的結果。
![次線性函式](/img/5/537/nBnauM3XwYDOykTO3YDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzLzgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/5/88d/nBnauM3X3ETM1MzM3ADN1kzN1UTM1QDN5MjM5ADMwAjMwUzLwQzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/5/4d8/nBnauM3X2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/d/2b7/nBnauM3XwITMzIjN5czM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3MzL4AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
命題1設線性空間X上的函式 ,且 ,那么 是次線性函式的充要條件為:存在一族線性形式 ,使得
![次線性函式](/img/1/a73/nBnauM3X4QjM3cjMxgzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4MzL2QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/5/4d8/nBnauM3X2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/5/88d/nBnauM3X3ETM1MzM3ADN1kzN1UTM1QDN5MjM5ADMwAjMwUzLwQzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/b/e13/nBnauM3XwQTNxQTM3MzMzATN1UTM1QDN5MjM5ADMwAjMwUzLzMzL2MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
推論設 是滿足 的次線性函式,那么 是代數閉凸集。
![次線性函式](/img/9/d49/nBnauM3XyYDM0MzM4YDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzL4gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定理 設K為線性空間X中的集合,且 是它的承托函式,即
![次線性函式](/img/3/409/nBnauM3X0MjNxYDM3QjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL0IzLwEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
那么
![次線性函式](/img/f/25d/nBnauM3XyIDM4gzN2czM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3MzLyEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
的充要條件為:K是代數閉凸集。
Minkowski函式
![次線性函式](/img/4/e92/nBnauM3XwczM1UTO4AzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczL2YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![次線性函式](/img/e/1ee/nBnauM3XyUjM2IjM5EDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLxQzLwAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
非負的次線性函式稱為Minkowski函式,這種函式與包含原點的凸集緊密相關,設 為凸集,且 ,令
![次線性函式](/img/d/50f/nBnauM3X0EDN5EjN4MDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLzQzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![次線性函式](/img/6/c45/nBnauM3XwYDOyEDM0MzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLzMzLyQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
這裡規定 ,於是有:
![次線性函式](/img/3/b47/nBnauM3XxQjN3MDM2YDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzLzYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
命題2 是Minkowski函式。
![次線性函式](/img/2/bee/nBnauM3XyYzNwYjMyEDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLxQzLyIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![次線性函式](/img/c/68c/nBnauM3XxEDO4ADNyAjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwYzLxUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
命題3 設A為X中的凸集,且 , 如,式(2)所定義,那么
![次線性函式](/img/1/a4c/nBnauM3X0MzNzkjN1gjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4IzLwAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![次線性函式](/img/4/065/nBnauM3XxcTO5IjM1MzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLzMzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
命題4設 為Minkowski函式,凸集A滿足
![次線性函式](/img/7/d7f/nBnauM3X4YzN0gTM2MDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLzQzL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
那么必定有
![次線性函式](/img/5/b25/nBnauM3X1YjN5kTNwgzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4MzLwAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
命題3把一個相對代數內部非空的凸集與一個Minkowski函式聯繫起來,且它的相對代數內部與代數閉包也都可用這個Minkowski函式表示,命題4又說明這樣的Minkowski函式聯繫的是一族有相同的相對代數內部和代數閉包的凸集。值得注意的是:命題4中並無A的相對代數內部包含原點的要求,於是式(3)的兩端又可看作相對代數內部和代數閉包概念的某種推廣(這裡用A的錐包代替A的仿射包來考慮)。
舉例
每個(半)範數是一個次線性函式。 相反的情況是不正確的,因為(半)規範可以在任何欄位(不一定是有序的)上具有其域向量空間,並且必須具有R作為其代碼域。
範數,是具有“長度”概念的函式。線上性代數、泛函分析及相關的數學領域,範數是一個函式,是矢量空間內的所有矢量賦予非零的正長度或大小。半範數可以為非零的矢量賦予零長度。
定義範數的矢量空間是賦范矢量空間;同樣,定義半範數的矢量空間就是賦半范矢量空間。
在二維的歐氏空間R中定義歐氏範數,在該矢量空間中,元素被畫成一個從原點出發的帶有箭頭的有向線段,每一個矢量的有向線段的長度即為該矢量的歐氏範數。