次線性函式

次線性函式

次線性函式(sublinear function)是一類重要的凸函式。正齊次且是次可加的函式稱為次線性函式。局部凸空間(包括賦范線性空間、有限維空間)上的下半連續次線性函式一定是連續線性函式族的上包絡。如果-f是次線性函式,那么f稱為上線性函式。

基本信息

基本介紹

次線性函式 次線性函式

有一類特別重要的凸函式 ,稱為 次線性函式,它滿足

次線性函式 次線性函式

( 正齊次性);

次線性函式 次線性函式
次線性函式 次線性函式

,( 次可加性)。

次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式

任何線性形式(函式)當然都是 次線性函式。反之,易證:如果 ,且 和 都是次線性函式,那么 一定是線性函式。

相關性質

次線性函式 次線性函式
次線性函式 次線性函式

次線性函式必定是凸函式;於是次線性函式本質上也將是仿射函式族的上包絡。但由於次線性函式 還一定滿足 等條件,我們還能得到更強的結果。

次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式

命題1設線性空間X上的函式 ,且 ,那么 是次線性函式的充要條件為:存在一族線性形式 ,使得

次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式
次線性函式 次線性函式

推論設 是滿足 的次線性函式,那么 是代數閉凸集。

次線性函式 次線性函式

定理 設K為線性空間X中的集合,且 是它的承托函式,即

次線性函式 次線性函式

那么

次線性函式 次線性函式

的充要條件為:K是代數閉凸集。

Minkowski函式

次線性函式 次線性函式
次線性函式 次線性函式

非負的次線性函式稱為Minkowski函式,這種函式與包含原點的凸集緊密相關,設 為凸集,且 ,令

次線性函式 次線性函式
次線性函式 次線性函式

這裡規定 ,於是有:

次線性函式 次線性函式

命題2 是Minkowski函式。

次線性函式 次線性函式
次線性函式 次線性函式

命題3 設A為X中的凸集,且 , 如,式(2)所定義,那么

次線性函式 次線性函式
次線性函式 次線性函式

命題4設 為Minkowski函式,凸集A滿足

次線性函式 次線性函式

那么必定有

次線性函式 次線性函式

命題3把一個相對代數內部非空的凸集與一個Minkowski函式聯繫起來,且它的相對代數內部與代數閉包也都可用這個Minkowski函式表示,命題4又說明這樣的Minkowski函式聯繫的是一族有相同的相對代數內部和代數閉包的凸集。值得注意的是:命題4中並無A的相對代數內部包含原點的要求,於是式(3)的兩端又可看作相對代數內部和代數閉包概念的某種推廣(這裡用A的錐包代替A的仿射包來考慮)。

舉例

每個(半)範數是一個次線性函式。 相反的情況是不正確的,因為(半)規範可以在任何欄位(不一定是有序的)上具有其域向量空間,並且必須具有R作為其代碼域。

範數,是具有“長度”概念的函式。線上性代數、泛函分析及相關的數學領域,範數是一個函式,是矢量空間內的所有矢量賦予非零的正長度或大小。半範數可以為非零的矢量賦予零長度。

定義範數的矢量空間是賦范矢量空間;同樣,定義半範數的矢量空間就是賦半范矢量空間。

在二維的歐氏空間R中定義歐氏範數,在該矢量空間中,元素被畫成一個從原點出發的帶有箭頭的有向線段,每一個矢量的有向線段的長度即為該矢量的歐氏範數。

相關詞條

熱門詞條

聯絡我們