基本概念
模糊控制規則
模糊控制規則是模糊控制器的核心,它的正確與否直接影響到控制器的性能,其數目的多寡也是衡量控制器性能的一個重要因素。
模糊控制規則是模糊控制器中知識庫的一部分,模糊控制規則建立在語言變數的基礎上。語言變數取值為“大”、“中”、“小”等這樣的模糊子集,各模糊子集以隸屬函式表明基本論域上的精確值屬於該模糊子集的程度。因此,為建立模糊控制規則,需要將基本論域上的精確值依據隸屬函式歸併到各模糊子集中,從而用語言變數值(大、中、小等)代替精確值。這個過程代表了人在控制過程中對觀察到的變數和控制量的模糊劃分。由於各變數取值範圍各異,故首先將各基本論域分別以不同的對應關係,映射到一個標準化論域上。通常,對應關係取為量化因子。為便於處理,將標準論域等分離散化,然後對論域進行模糊劃分,定義模糊子集,如NB、PZ、PS等。同一個模糊控制規則庫,對基本論域的模糊劃分不同,控制效果也不同 。
模糊控制器
如圖所示,模糊控制器的基本結構包括知識庫、模糊推理、輸入量模糊化、輸出量精確化四部分。
(1)知識庫
知識庫包括模糊控制器參數庫和模糊控制規則庫。具體來說,對應關係、標準論域、模糊子集數以及各模糊子集的隸屬函式都對控制效果有很大影響。這3類參數與模糊控制規則具有同樣的重要性,因此把它們歸併為模糊控制器的參數庫,與模糊控制規則庫共同組成知識庫。
(2)模糊化
將精確的輸入量轉化為模糊量F有兩種方法:
a.將精確量轉換為標準論域上的模糊單點集。
精確量x經對應關係G轉換為標準論域x上的基本元素.
b.將精確量轉換為標準論域上的模糊子集。
精確量經對應關係轉換為標準論域上的基本元素,在該元素上具有最大隸屬度的模糊子集,即為該精確量對應的模糊子集。
(3)模糊推理
最基本的模糊推理形式為:
前提1 IF A THEN B
前提2 IF A′
結論 THEN B′
其中,A、A′為論域U上的模糊子集,B、B′為論域V上的模糊子集。前提1稱為模糊蘊涵關係,記為A→B。在實際套用中,一般先針對各條規則進行推理,然後將各個推理結果總合而得到最終推理結果。
(4)精確化
推理得到的模糊子集要轉換為精確值,以得到最終控制量輸出y。目前常用兩種精確化方法:
a.最大隸屬度法。在推理得到的模糊子集中,選取隸屬度最大的標準論域元素的平均值作為精確化結果。
b.重心法。將推理得到的模糊子集的隸屬函式與橫坐標所圍面積的重心所對應的標準論域元素作為精確化結果。在得到推理結果精確值之後,還應按對應關係,得到最終控制量輸出y。
模糊控制規則來源
模糊控制規則的取得方式:
(1) 專家的經驗和知識
模糊控制也稱為控制系統中的 專家系統,專家的經驗和知識在其設計上有餘力的線索。人類在日常生活常中判斷事情,使用語言定性分析多於數值定量分析;而模糊控制規則提供了一個描述人類的行為及決策分析的自然架構;專家的知識通常可用if….then的型式來表述。
藉由詢問經驗豐富的專家,獲得系統的知識,並將知識改為if….then的型式,如此便可構成模糊控制規則。除此之外,為了獲得最佳的系統性能,常還需要多次使用 試誤法,以修正模糊控制規則。
(2) 操作員的操作模式
現在流行的專家系統,其想法只考慮知識的獲得。專家可以巧妙地操作複雜的控制對象,但要將專家的訣竅加以邏輯化並不容易,這就需要在控制上考慮技巧的獲得。許多工業系統無法以一般的控制理論做正確的控制,但是熟練的操作人員在沒有數學模式下,卻能夠成功地控制這些系統:這啟發我們記錄操作員的操作模式,並將其整理為if….then的型式,可構成一組控制規則。
(3) 學習
為了改善模糊控制器的性能,必須讓它有自我學習或自我組織的能力,使模糊控制器能夠根據設定的目標,增加或修改模糊控制規則。
模糊控制規則形式
模糊控制規則的形式主要可分為二種:
(1) 狀態評估模糊控制規則
狀態評估(state evaluation)模糊控制規則類似人類的直覺思考,它被大多數的模糊控制器所使用,其形式如下:
其中及y為語言變數或稱為模糊變數,代表系統的態變數和控制變數;及為語言值,代表論域中的模糊集合。該形式還有另一種表示法,是將後件部改為系統狀態變數的函式,其形式如下:
(2)目標評估模糊控制規則
目標評估(object evaluation)模糊控制規則能夠評估控制目標,並且預測未來控制信號,其形式如下:
模糊控制規則表
實際套用模糊控制時,最初的問題是控制器的設計,即如何設計模糊控制法則。
在模糊控制器裡面,這個表是模糊規則表,其中E表示誤差,EC表示誤差變化,U是輸出變數,第一列(NB,NM,....)是E的語言變數,同理,第一行是EC的語言變數。建立這個模糊規則表則有三種方法:
(1)以控制工程知識和成熟的控制經驗為基礎。
(2)以操作人員的實際控制過程為基礎。
(3)過程模糊模型。