本原理想

理想是集合論中的基本概念之一。理想的概念在現代數學的幾乎每個分支中均有套用,且有許多變體或引申。

本原理想(primitive ideal)是與(右)本原環密切相關的一類理想。它可刻畫環的雅各布森根。設a是環R的理想,若R/a是本原環(左本原環),則稱a是R的本原理想(左本原理想)。

概念

本原理想(primitive ideal)是與(右)本原環密切相關的一類理想。它可刻畫環的雅各布森根。設a是環R的理想,若R/a是本原環(左本原環),則稱a是R的本原理想(左本原理想)。本原理想也可由下麵條件刻畫:環R的理想a是本原理想的充分必要條件是a為某既約右R模的零化子。另一個充分必要條件是對R的某極大模右理想I,a=(I∶R)={x∈R|RxI}。任何本原理想都是素理想。

環是對並與差運算封閉的集類,測度論中重要概念之一。設F是Ω上的一個非空集類.如果它對集的並及差運算封閉,即對任何A,B∈F,都有A∪B∈F,A\B∈F,則稱F為Ω上的環。例如,若F是由實直線R上任意有限個左開右閉的有限區間的並集:

本原理想 本原理想

的全體構成的集類,則F是R上的一個環.環也是對於交與對稱差運算封閉的集類,並按這兩種運算成為布爾環。要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質.環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。

環論

環論是抽象代數學的主要分支之一。它是具有兩個運算的代數系。在非空集合R中定義加法“+”和乘法“·”運算,使得R中任意元a,b,c適合條件:

1.R對加法為交換群,稱為R的加法群,記為(R,+);

2.R對乘法適合結合律,即(R,·)是半群,稱為R的乘法半群;

3.乘法對加法的左、右分配律成立,即

a·(b+c)=a·b+a·c (左分配律),

(b+c)·a=b·a+c·a (右分配律);

則稱R為結合環,簡稱環(通常a·b寫為ab)。它是環論研究的主要對象。環論起源於19世紀關於實數域的擴張與分類,以及戴德金(Dedekind,J.W.R.)、哈密頓(Hamilton,W.R.)等人對超複數系的建立和研究。韋德伯恩(Wedderburn,J.H.M.)於1907年給出的結構定理給出代數研究的模式,也成為環結構研究的模式.20世紀20-30年代,諾特(Noether,E.)建立了環的理想理論,阿廷(Artin,E.)又將代數結構定理推廣到有極小條件的環.同時,對非極小條件的環,馮·諾伊曼(von Nenmann,H.)建立了正則環理論,相繼蓋爾范德(Гельфанд,И.М.)創立了賦值環,克魯爾(Krull,W.)建立了局部環理論,以及哥爾迪(Goldie,A.W.)完善了極大條件環理論。

20世紀40年代,根論迅速發展,尤其是雅各布森(Jacobson,N.)於1945年引入的被稱為雅各布森根的概念後,建立了本原環理論、半本原環的結構定理與本原環的稠密性定理,完善和深化了不帶附加條件環的理論。20世紀50年代中期,阿密蘇(Amitsur,S.A.)、庫洛什(Kurosh,A.)創立了根的一般理論,環論已趨完善。

本原環

本原環是一類重要的環。研究雅各布森根時引入的,其後被廣泛討論與套用。若環R有一個忠實右(左)R單模(即忠實既約右(左)R模),則稱R為右(左)本原環。通常將右本原環簡稱本原環。一般說來,左本原環未必是本原環,但當R有極小單側理想時,左本原性與本原性一致。任何本原環皆為素環。雅各布森(Jacobson,N.)引入本原環來代替有限條件下的單環,從而得出在沒有有限條件限制下的一般半單環的結構定理,這是環論的重大發展。

雅各布森根

雅各布森根是以右(左)擬正則性為根性質的一種重要的根。設R是任意環,若R有本原理想,則環R的一切本原理想的交稱為R的雅各布森根,用J(R)表示。當R無本原理想,規定J(R)=R,此時R稱為J根環(雅各布森環)。雅各布森根還可以從多種角度描述:J(R)等於R的一切左本原理想的交,又等於R的最大的右擬正則理想,它包含R的一切右擬正則右理想,還等於R的最大左擬正則理想,它包含R的一切左擬正則左理想,同時,亦等於R的一切模的極大右理想的交,也等於R的一切模的極大左理想的交,又等於{x∈R|xa是右擬正則,對任意a∈R}。雅各布森根是雅各布森(Jacobson,N.)於1945年引入的。

理想

理想是集合論中的基本概念之一。設S為任意集合,若I⊆P(S)且滿足:

1.∅∈I;

2.若X,Y∈I,則X∪Y∈I;

3.若X,Y⊆S,X∈I,Y⊆X,則Y∈I;

則稱I為集合S上的理想。理想的概念在現代數學的幾乎每個分支中均有套用,且有許多變體或引申。例如,布爾代數上的理想即為集合上的理想的一種變體。設B為任意布爾代數,若B的一個子集I滿足:

1.0∈I,1∉I(其中0,1分別為布爾代數B中的零元與么元);

2.對任何u∈I,v∈I,有u+v∈I;

3.對任何u,v∈B,若u∈I且v≤u,又v∈I;

則稱I為B上的理想。

素理想

素理想是一類特殊理想。它是整數環中素數生成理想的推廣。設P是環R的理想,對R中任意理想A,B,若ABP必有AP或BP,則稱P為R的素理想。它等價於對x,y∈R,若xRyP則x∈P或y∈P.當R是交換環時,P是R的素理想若且唯若對R中任意元素a,b,若ab∈P,則a∈P或b∈P。素理想在交換環的理想理論中有重要作用。若對任意環R,a,b∈R,由ab∈P得出a∈P或b∈P,則稱P為R的完全素理想。因此,對交換環來說,素與完全素概念是一致的。

相關詞條

相關搜尋

熱門詞條

聯絡我們