基本介紹
內容簡介
《有限元方法的數學理論》編輯推薦:十餘年有限元方法教學與研究的積累與集錦,有限元方法的經典理論通向前沿研究的橋樑,內容全面,精煉,涵蓋了有限元方法的數學基礎,既強調理論,又注重實踐套用,深入淺出.通俗易懂。
作者簡介
杜其奎,男,1963年生,教授,博士生導師,南京師範大學數學科學學院副院長,長期從事計算數學的研究以及數學教學工作,主要研究領域為有限元、邊界元、區域分解等,在典型外區域上依賴時間問題的自然邊界元方法的研究等方面有突出成果,先後在國內外專業雜誌上發表學術論文50餘篇,在科學出版社出版教材2部。主持國家自然科學基金1項,參加國家自然科學基金3項,主持省部級科研項目3項,參加省部級科研項目3項;先後獲得10餘項榮譽,其中2006年“科學工程中高性能算法的研究”獲江蘇省科技進步二等獎,2009年為南京師範大學教學名師培養對象。
陳金如,男,1964年生,教授,博士生導師,南京師範大學數學科學學院院長,長期從事有限元、區域分解、多重格線方法和多尺度方法的研究,在國內外專業雜誌上發表學術論文40餘篇,主持國家自然科學基金3項,參加國家自然科學基金3項,主持和參加省部級科研項目多項,2006年“科學工程中高性能算法的研究”獲江蘇省科技進步二等獎。
圖書目錄
《大學數學科學叢書》序
前言
符號說明
第1章 有限元方法的簡單回顧
1.1 變分問題
1.2 Galerkin逼近
1.2.1 Galerkin逼近
1.2.2 誤差分析
思考題
第2章 橢圓邊值問題的變分問題
2.1 抽象的變分問題
2.2 Lax-Milgram定理
2.2.1 對稱情形
2.2.2 非對稱情形
2.3 若干例子
2.3.1 Green公式
2.3.2 若干例子
思考題
第3章 Sobolev空間概要
3.1 Lp空間
3.2 廣義導數(微商)
3.3 磨光算予、均值逼近與單位分解
3.3.1 磨光運算元
3.3.2 均值逼近定理
3.3.3 單位分解
3.4 Sobolev空間
3.5 Sobolev空間嵌入定理
3.6 等價範數
3.7 商空間
思考題
第4章 有限元離散化
4.1 有限元離散化
4.2 二維情形
4.2.1 三角形單元
4.2.2 矩形單元
4,3有限元方法的計算流程
4.4 預處理共軛梯度法
思考題
第5章 協調有限元的誤差分析
5.1 引言
5.2 Sobolev空間中的分片多項式插值
5.2.1 仿射等價元之間範數的關係
5.2.2 單元插值誤差估計
5.3 多邊形區域上二階問題的誤差分析
5.3.1 先驗誤差估計
5.3.2 /2_模與負模估計
5.3.3 非光滑解的收斂性
5.4 逆不等式
5.4.1 單元上的逆不等式
5.4.2 逆不等式
5.4.3 HS模估計
5.4.4 最大模估計
5.5 非光滑函式的插值
5.5.1 有限元空間
5.5.2 Clement插值
5.6 Nitsche權模方法
5.6.1 權模定義與權函式關係式
5.6.2 加權插值逼近定理
5.6.3 最大模估計
5.7 拋物型方程有限元解的誤差估計
5.7.1 半離散化解的L2-模與梯度估計
5.7.2 全離散化解的誤差估計
思考題
第6章 數值積分的影響
6.1 有限元方法中的數值積分
6.1.1 三角形單元上的一次精度求積公式
6.1.2 三角形單元上的二次精度求積公式
6.1.3 三角形單元上的三次精度求積公式
6.1.4 三角形單元上帶導數的三次精度求積公式
6.1.5 矩形單元上的數值積分
6.2 數值積分下的抽象誤差估計
6.3 相容誤差估計
思考題
第7章 非協調有限元
7.1 抽象的誤差估計
7.2 二階問題的非協調元
7.2.1 Crouzeix-Raviart三角形元(C-R元)
7.2.2 Wilson矩形元
7.3 四階問題的非協調元
思考題
第8章 混合有限元方法
8.1 混合變分問題之例
8.2 抽象的連續混合變分問題
8.2.1 混合變分問題
8.2.2 推廣Lax-Milgram定理
8.2.3 LBB條件
8.3 離散化逼近
8.4 兩個套用實例
8.4.1 Poisson方程邊值問題的混合有限元方法
8.4.2 Stokes問題的混合有限元方法
思考題
參考文獻
索引