有理數和無理數

證明:假設√2不是無理數,而是有理數。 √2=p/q 由於2q^2是偶數,p

有理數(rational number):能精確地表示為兩個整數之比的數.
如3,-98.11,5.72727272……,7/22都是有理數.
整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數
無理數指無限不循環小數 如:π
·無理數與有理數的區別:
1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限循環小數,
比如4=4.0, 4/5=0.8, 1/3=0.33333……而無理數只能寫成無限不循環小數,
比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不循環小數.
2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉“無理”的帽子,把有理數改叫為“比數”,把無理數改叫為“非比數”。本來嘛,無理數並不是不講道理,只是人們最初對它不太了解罷了。
利用有理數和無理數的主要區別,可以證明√2是無理數。
證明:假設√2不是無理數,而是有理數。
既然√2是有理數,它必然可以寫成兩個整數之比的形式:
√2=p/q
又由於p和q沒有公因數可以約去,所以可以認為p/q 為既約分數,即最簡分數形式。
把 √2=p/q 兩邊平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由於2q^2是偶數,p 必定為偶數,設p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也為偶數,設q=2n
既然p和q都是偶數,他們必定有公因數2,這與前面假設p/q是既約分數矛盾。這個矛盾是有假設√2是有理數引起的。因此√2是無理數。

相關詞條

熱門詞條

聯絡我們