第一次數學危機
畢達哥拉斯是公元前五世紀古希臘的著名數學家與哲學家。他曾創立了一個合政治、學術、宗教三位一體的神秘主義派別:畢達哥拉斯學派。由畢達哥拉斯提出的著名命題“萬物皆數”是該學派的哲學基石。畢達哥拉斯學派所說的數僅指整數。而“一切數均可表成整數或整數之比”則是這一學派的數學信仰。然而,具有戲劇性的是由畢達哥拉斯建立的畢達哥拉斯定理卻成了畢達哥拉斯學派數學信仰的“掘墓人”。
畢達哥拉斯定理提出後,其學派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發現這一長度既不能用整數,也不能用分數表示,而只能用一個新數來表示。希帕索斯的發現導致了數學史上第一個無理數的誕生。小小的出現,卻在當時的數學界掀起了一場巨大風暴。它直接動搖了畢達哥拉斯學派的數學信仰,使畢達哥拉斯學派為之大為恐慌。實際上,這一偉大發現不但是對畢達哥拉斯學派的致命打擊,對於當時所有古希臘人的觀念這都是一個極大的衝擊。這一結論的悖論性表現在它與常識的衝突上:任何量,在任何精確度的範圍內都可以表示成有理數。這不但在希臘當時是人們普遍接受的信仰,就是在今天,測量技術已經高度發展時,這個斷言也毫無例外是正確的!可是為我們的經驗所確信的,完全符合常識的論斷居然被小小的的存在而推翻了!這應該是多么違反常識,多么荒謬的事!它簡直把以前所知道的事情根本推翻了。更糟糕的是,面對這一荒謬人們竟然毫無辦法。這就在當時直接導致了人們認識上的危機,從而導致了西方數學史上一場大的風波,史稱“第一次數學危機”。
第二次數學危機
出現
第二次數學危機導源於微積分工具的使用。伴隨著人們科學理論與實踐認識的提高,十七世紀幾乎在同一時期,微積分這一銳利無比的數學工具為牛頓、萊布尼茲共同發現。這一工具一問世,就顯示出它的非凡威力。許許多多疑難問題運用這一工具後變得易如反掌。但是不管是牛頓,還是萊布尼茲所創立的微積分理論都是不嚴格的。兩人的理論都建立在無窮小分析之上,但他們對作為基本概念的無窮小量的理解與運用卻是混亂的。因而,從微積分誕生時就遭到了一些人的反對與攻擊。其中攻擊最猛烈的是英國大主教貝克萊。
解決
經過柯西(微積分收官人)用極限的方法定義了無窮小量,微積分理論得以發展和完善,從而使數學大廈變得更加輝煌美麗!
第三次數學危機
出現
十九世紀下半葉,康托爾創立了著名的集合論,在集合論剛產生時,曾遭到許多人的猛烈攻擊。但不久這一開創性成果就為廣大數學家所接受了,並且獲得廣泛而高度的讚譽。數學家們發現,從自然數與康托爾集合論出發可建立起整個數學大廈。因而集合論成為現代數學的基石。“一切數學成果可建立在集合論基礎上”這一發現使數學家們為之陶醉。1900年,國際數學家大會上,法國著名數學家龐加萊就曾興高采烈地宣稱:“……藉助集合論概念,我們可以建造整個數學大廈……今天,我們可以說絕對的嚴格性已經達到了……”
可是,好景不長。1903年,一個震驚數學界的訊息傳出:集合論是有漏洞的!這就是英國數學家羅素提出的著名的羅素悖論。
羅素構造了一個集合S:S由一切不是自身元素的集合所組成。然後羅素問:S是否屬於S呢?根據排中律,一個元素或者屬於某個集合,或者不屬於某個集合。因此,對於一個給定的集合,問是否屬於它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬於S,根據S的定義,S就不屬於S;反之,如果S不屬於S,同樣根據定義,S就屬於S。無論如何都是矛盾的。
其實,在羅素之前集合論中就已經發現了悖論。如1897年,布拉利和福爾蒂提出了最大序數悖論。1899年,康托爾自己發現了最大基數悖論。但是,由於這兩個悖論都涉及集合中的許多複雜理論,所以只是在數學界揭起了一點小漣漪,未能引起大的注意。羅素悖論則不同。它非常淺顯易懂,而且所涉及的只是集合論中最基本的東西。所以,羅素悖論一提出就在當時的數學界與邏輯學界內引起了極大震動。如G.弗雷格在收到羅素介紹這一悖論的信後傷心地說:“一個科學家所遇到的最不合心意的事莫過於是在他的工作即將結束時,其基礎崩潰了。羅素先生的一封信正好把我置於這個境地。”戴德金也因此推遲了他的《什麼是數的本質和作用》一文的再版。可以說,這一悖論就像在平靜的數學水面上投下了一塊巨石,而它所引起的巨大反響則導致了第三次數學危機。
解決
排除悖論
危機產生後,數學家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則。“這些原則必須足夠狹窄,以保證排除一切矛盾;另一方面又必須充分廣闊,使康托爾集合論中一切有價值的內容得以保存下來。”1908年,策梅羅在自己這一原則基礎上提出第一個公理化集合論體系,後來經其他數學家改進,稱為ZF系統。這一公理化集合系統很大程度上彌補了康托爾樸素集合論的缺陷。除ZF系統外,集合論的公理系統還有多種,如諾伊曼等人提出的NBG系統等。
公理化集合系統
成功排除了集合論中出現的悖論,從而比較圓滿地解決了第三次數學危機。但在另一方面,羅素悖論對數學而言有著更為深刻的影響。它使得數學基礎問題第一次以最迫切的需要的姿態擺到數學家面前,導致了數學家對數學基礎的研究。而這方面的進一步發展又極其深刻地影響了整個數學。如圍繞著數學基礎之爭,形成了現代數學史上著名的三大數學流派,而各派的工作又都促進了數學的大發展等等。