探索岩石礦物

探索岩石礦物

有趣的科普知識;精美的照片圖畫;便捷的網路連結;生動的校外課堂。本書從岩石礦物這個視角,介紹了人類科技文明的盛況。透過精美的多媒體展現形式,公眾能夠深入科學內涵,體驗研究過程,同時充分感受科學的快樂以及科技文明的魅力。

編輯推薦

有趣的科普知識;精美的照片圖畫;便捷的網路連結;生動的校外課堂。本書從岩石礦物這個視角,介紹了人類科技文明的盛況。透過精美的多媒體展現形式,公眾能夠深入科學內涵,體驗研究過程,同時充分感受科學的快樂以及科技文明的魅力。

圖書目錄

如何使用網站

岩石地球

岩石與礦物

地質學史

地球的結構

板塊構造

侵蝕力

岩石循環

火山

火成岩

火成岩的鑑別

變質岩

區域變質作用

沉積岩

化學沉積物

洞穴

化石

由生物形成的岩石

太空岩石

礦物種類

物理性質

光學性質

自然元素

金屬元素

長英質矽酸鹽

鐵鎂質矽酸鹽

石英

氧化物

硫化物

硫酸鹽及其他相似鹽類

鹵化物

碳酸鹽及其他相似鹽類

礦物的早期套用

寶石

裝飾品

歷史上的金屬

現代金屬

工業用礦物

家居中利用的礦物

生命所需的礦物質

野外地質學

岩石和礦物的分類及其性質

辭彙表

岩石和礦物介紹

岩石是天然產出的具穩定外型的礦物或玻璃集合體,按照一定的方式結合而成。是構成地殼和上地幔的物質基礎。按成因分為岩漿岩、沉積岩和變質岩。其中岩漿岩是由高溫熔融的岩漿在地表或地下冷凝所形成的岩石,也稱火成岩或噴出岩;沉積岩是在地表條件下由風化作用、生物作用和火山作用的產物經水、空氣和冰川等外力的搬運、沉積和成岩固結而形成的岩石;變質岩是由先成的岩漿岩、沉積岩或變質岩,由於其所處地質環境的改變經變質作用而形成的岩石。

地殼深處和上地幔的上部主要由火成岩和變質岩組成。從地表向下16公里範圍內火成岩和變質岩的體積占95%。地殼表面以沉積岩為主,它們約占大陸面積的75%,洋底幾乎全部為沉積物所覆蓋。 岩石學主要研究岩石的物質成分、結構、構造、分類命名、形成條件、分布規律、成因、成礦關係以及岩石的演化過程等。它屬地質科學中的重要的基礎學科。

岩石的性質

岩石工程性質無怪乎就是物質成分(顆粒本身的性質)、結構(顆粒之間的聯結)、構造(成生環境及改造、建造)、現今賦存環境(應力、溫度、水)這幾個方面的因素。如果是岩體,則取決於結構面和岩塊兩個方面,在大多數情況下,結構面起著控制性作用。

岩石的歷史

地球形成之初,地核的引力把宇宙中的塵埃吸過來,凝聚的塵埃就變成了山石,經過風化,變成了岩石。接著就變成隕石,在沒有落入地球大氣層時,是游離於外太空的石質的,鐵質的或是石鐵混合的物質,若是落入大氣層,在沒有被大氣燒毀而落到地面就成了我們平時見到的隕石,簡單的說,所謂隕石,就是微縮版的小行星“撞擊了地球”而留下的殘骸。幾億年過去了,世界上就有了無數岩石。現在人類 在岩土工程界,常按工程性質將岩石分為極堅硬的、堅硬的、中等堅硬的和軟弱的四種類型。正在向定量方向發展。

古老岩石都出現在大陸內部的結晶基底之中。代表性的岩石屬基性和超基性的火成岩。這些岩石由於受到強烈的變質作用已轉變為富含綠泥石和角閃石的變質岩,通常我們稱為綠岩。如1973年在西格陵蘭發現了同位素年齡約38億年的花崗片麻岩。1979年,巴屯等測定南非波波林帶中部的片麻岩年齡約39億年左右。

加拿大北部的變質岩—阿卡斯卡片麻岩是保存完好的古老地球表面的一部分。放射性年代測定表明阿卡斯卡片麻岩有將近40億年的年齡,從而說明某些大陸物質在地球形成之後幾億年就已經存在了。

最近,科學家在澳大利亞西南部發現了一批最古老的岩石,根據其中所含的鋯石礦物晶體的同位素分析結果,表明它們的“年齡”約為43億至44億歲,是迄今發現的地球上最古老的岩石樣本,根據這一發現可以推論,這些岩石形成時,地球上已經有了大陸和海洋。在地球誕生2億至3億年後,可能並不象人們所認為的那樣由熾熱的岩漿所覆蓋,而是已經冷卻到了足以形成固體地表和海洋的溫度。地球的圈層分異在距今44億年前可能就已經完成了。

目前在中國發現的最古老岩石是冀東地區的花崗片麻岩,其中包體的岩石年齡約為35億年。

澳大利亞西部Warrawoona群中的微化石在形態結構上比較完整。它們究竟是藍藻還是細菌目前尚難確定。通常認為,早期疊層石是藍藻建造的,疊層石是藍藻存在的指示。如果35億年前就已經出現藍藻,則說明釋氧的光合作用早就開始了,這便引出一個問題:為什麼直到20億年前大氣圈才積累自由氧呢?從35億年前到20億年前中間相隔15億年之久,為什麼氧的積累如此緩慢?對此當然有不同的解釋。例如近年來已經發現疊層石也可能完全由光合細菌建造,或甚至由非光合細菌建造。

最古老生命存在的間接證據中較重要的是格陵蘭西部條帶狀鐵建造(BIF)和輕碳同位素。如果證據成立,則由此可推斷在38億年前的地球上已經出現進行釋氧光合作用的微生物,即類似藍藻的生物。根據Cloud的解釋,BIF是由光和微生物周期性地釋氧而引起亞鐵氧化為高價鐵沉積下來的。輕碳同位素也是光合作用的間接證據。但反對的意見認為,BIF形成所需的氧可以通過大氣中的水分子的光分解來提供,而輕碳同位素可能來自碳酸鹽的熱分解。

十八世紀末岩石學從礦物學中脫胎出來而發展成一門獨立的學科。在岩石學發展的初期,主要研究的是火成岩,到了十九世紀中葉才開始系統地研究變質岩,而沉積岩直到二十世紀初才引起人們的注意。目前岩石學正沿著岩漿岩石學、沉積岩石學和變質岩石學三個主要的分支方向發展。

岩石的套用

一、做建材的岩石

1、大理岩:大理岩的岩面質感細緻,常用來作為壁面或地板。由於大理岩是由石灰岩變質而成,主要成分為碳酸鈣,因此也是製造水泥的原料。大理岩材質軟而細緻,是很好的雕塑石材,許多有名的雕像都是由大理岩作成的,如著名的維納斯像。其他如牆面或擺飾,也常是由大理石加工琢磨而成,如花瓶、菸灰缸、桌子等家用品。

2、花崗岩:本土的花崗岩只有在金門才看得到,因此金門的老房子幾乎都是用花崗岩做成的。台灣的寺廟所用的花崗岩,是來自福建,多用於寺廟裡的龍柱、地磚、石獅。

3、板岩:因其容易裂成薄板狀,且在山區極易取得,故原住民至今仍使用板岩作為建材,築成石板屋或圍牆。

4、礫岩:有些礫岩含有鵝卵石及砂,而且膠結不良,容易將它們分散開來,例如:台灣西部第四紀的頭嵙山層中就是這種礫岩,其中卵石和砂都是建材。

5、石灰岩:台灣最常見的石灰岩是由珊瑚形成的,通稱為珊瑚礁石灰岩。在澎湖,珊瑚礁石俗稱“石”,居民用以作為圍牆建材,以遮蔽強烈的東北季風,保護農作物。

6、泥岩:由於其主要成分是黏土,自古就被作為磚瓦、陶器的原料。

各種岩石礦物 各種岩石礦物

7、安山岩:由於材質堅硬,亦常用來作廟宇的龍柱、牆壁的石雕、墓碑、地磚等。

二、可提鍊金屬的礦物

1、金礦:含金的岩石經過風化和侵蝕作用,金會被分離出來而成自然金,因為金比泥沙重得多,容易沉積下來,經過淘洗,就成為黃金。

2、黃銅礦:黃銅礦是提煉銅最主要的礦物。

3、方鉛礦:方鉛礦呈現鉛灰色,有立方體的解理,是最重要的含鉛礦物。

4、赤鐵礦:赤鐵礦外觀顏色呈現鐵灰色或紅褐色,是最重要的含鐵礦物。

5、磁鐵礦:磁鐵礦屬含鐵礦物,具有磁性,吸附含鐵物質。

三、珍貴的寶石

礦物若具有堅硬、稀有、耐久、透明且顏色美麗的特點,即常被用來作為裝飾品,一般稱為寶石,以下是常見的寶石簡介:

1、鑽石:即俗稱的金剛石,有許多種顏色,如淡黃、褐、白、藍、綠、紅等,其中以無色透明的價值最高。

2、 剛玉:剛玉也有許多不同的顏色,如:紅色的剛玉俗名紅寶石,藍色的剛玉叫做藍寶石。其化學成分為三氧化二鋁。

3、蛋白石:一般為無色或白色,有些具有特殊的暈彩。

4、水晶:純石英單晶稱為水晶,水晶內因含不同雜質而呈現不同顏色,如:黃水晶、紫水晶等。石英的纖維狀顯微晶聚合體稱為玉髓;石英的粒狀顯微晶聚合體稱為燧石,這兩種礦物是台東縣重要的玉石。

四、做為顏料

有些礦物具有特別的顏色,可用來作成顏料,如藍色的藍銅礦,綠色的孔雀石,紅色的辰砂。

五、其他用途

1、石英:石英是製造玻璃及半導體的主要原料,如:苗栗縣汶水溪的上福基砂岩中的石英砂即為製造玻璃的主要材料。

2、方解石:方解石存在於大理岩及石灰岩中,是製造水泥的主要原料。

3、白雲母:白雲母因不導電、不導熱且具有高熔點的特性,因此經常被用來作為電熱器中絕緣體的材料。

4、石墨:硬度低,且具有油脂光澤,條痕為黑色,常用於製造鉛筆芯,此外石墨還可以做成潤滑劑、電極、坩堝等。

5、硫磺:火山地區的溫泉中即含有黃色的硫磺。

6、石膏:石膏一般用於固定骨折受傷處,或做成塑像,也用於建築工業。

7、磷灰石:用於製造農業用磷肥。

8、蛇紋石:含有鎂的成分,可用於煉鋼工業上。

9、滑石:硬度低,有滑膩感;通常被研磨成粉末,以製造顏料、爽身粉、去污粉、化妝品等。

岩石的產地

地球形成之出,地核的引力把宇宙中的塵埃吸過來,凝聚的塵埃就變成了山石,經過風化,變成了岩石。接著就變成隕石,在沒有落入地球大氣層時,是游離於外太空的石質的,鐵質的或是石鐵混合的物質,若是落入大氣層,在沒有被大氣燒毀而落到地面就成了我們平時見到的隕石,簡單的說,所謂隕石,就是微縮版的小行星“撞擊了地球”而留下的殘骸。

岩石的種類

① 火成岩 也稱岩漿岩,來自地球內部的熔融物質,在不同地質條件下冷凝固結而成的岩石。當熔漿由火山通道噴溢出地表凝固形成的岩石,稱噴出岩或稱火山岩。常見的火山岩有玄武岩、安山岩和流紋岩等。當熔岩上升未達地表而在地殼一定深度凝結而形成的岩石稱侵入岩,按侵入部位不同又分為深成岩和淺成岩。花崗岩、輝長岩、閃長岩是典型的深成岩。花崗斑岩、輝長玢岩和閃長玢岩是常見的淺成岩。根據化學組分又可將火成岩分為超基性岩(SiO2 ,小於45%)、基性岩(SiO2 ,45%~52%)、中性岩(SiO2 ,52%~65%)、酸性岩 (SiO2 ,大於65%)和 鹼性岩(含有特殊鹼性礦物,SiO2 ,52%~66%)。火成岩占地殼體積的64.7%。

② 沉積岩 在地表常溫、常壓條件下,由風化物質、火山碎屑、有機物及少量宇宙物質經搬運、沉積和成岩作用形成的層狀岩石。按成因可分為 碎屑岩、粘土岩 和化學岩(包括生物化學岩)。常見的沉積岩有砂岩、凝灰質砂岩、礫岩、粘土岩、頁岩、石灰岩、白雲岩、矽質岩、鐵質岩、磷質岩等。沉積岩占地殼體積的7.9%,但在地殼表層分布則甚廣,約占陸地面積的75%,而海底幾乎全部為沉積物所覆蓋。

沉積岩有兩個突出特徵:一是具有層次,稱為層理構造。層與層的界面叫層面,通常下面的岩層比上面的岩層年齡古老。二是許多沉積岩中有“石質化”的古代生物的遺體或生存、活動的痕跡-----化石,它是判定地質年齡和研究古地理環境的珍貴資料,被稱作是紀錄地球歷史的“書頁”和“文字”。

③ 變質岩 原有岩石經變質作用而形成的岩石。根據變質作用類型的不同,可將變質岩分為5類:動力變質岩、接觸變質岩、區域變質岩、混合岩和交代變質岩。常見的變質岩有糜棱岩、碎裂岩、角岩、板岩、千枚岩、片岩、片麻岩、大理岩、石英岩、角閃岩、片粒岩、榴輝岩、 混合岩 等。變質岩占地殼體積的27.4%。

岩石具有特定的比重、孔隙度、抗壓強度和抗拉強度等物理性質,是建築、鑽探、掘進等工程需要考慮的因素,也是各種礦產資源賦存的載體,不同種類的岩石含有不同的礦產。以火成岩為例,基性超基性岩與親鐵元素,如鉻、鎳、鉑族元素、鈦、釩、鐵等有關;酸性岩與親石原素如鎢、錫、鉬、鈹、鋰、鈮、鉭、鈾有關;金剛石僅產於金伯利岩和鉀鎂煌斑岩中;鉻鐵礦多產於純橄欖岩中;中國華南燕山早期花崗岩中盛產鎢錫礦床;燕山晚期花崗岩中常形成獨立的錫礦及鈮、鉭、鈹礦床。石油和煤只生於沉積岩中。前寒武紀變質岩石中的鐵礦具有世界性。許多岩石本身也是重要的工業原料,如北京的漢白玉(一種白色大理岩)是聞名中外建築裝飾材料,南京的雨花石、福建的壽山石、浙江的青田石是良好的工藝美術石材,即使那些不被人注意的河沙和卵石也是非常有用的建築材料。許多岩石還是重要的中藥用原料,如麥飯石(一種中酸性脈岩)就是十分流行的藥用岩石。岩石還是構成旅遊資源的重要因素,世界上的名山、大川、奇峰異洞都與岩石有關。我們祖先從石器時代起就開始利用岩石,在科學技術高度發展的今天,人們的衣、食、住、行、游、醫……無一能離開岩石。研究岩石、利用岩石、藏石、玩石、愛石已不再是科學家的專利,而逐漸變成廣大民眾生活的組成部分。

岩石的風化

岩石在太陽輻射、大氣、水和生物作用下出現破碎、疏鬆及礦物成分次生變化的現象。導致上述現象的作用稱風化作用。分為:①物理風化作用。主要包括溫度變化引起的岩石脹縮、岩石裂隙中水的凍結和鹽類結晶引起的撐脹、岩石因荷載解除引起的膨脹等。②化學風化作用。包括:水對岩石的溶解作用;礦物吸收水分形成新的含水礦物,從而引起岩石膨脹崩解的水化作用;礦物與水反應分解為新礦物的水解作用;岩石因受空氣或水中游離氧作用而致破壞的氧化作用。③生物風化作用。包括動物和植物對岩石的破壞,其對岩石的機械破壞亦屬物理風化作用,其屍體分解對岩石的侵蝕亦屬化學風化作用。人為破壞也是岩石風化的重要原因。岩石風化程度可分為全風化、強風化、弱風化和微風化4個級別。

大約在200年前,人們可能認為高山、湖泊和沙漠都是地球上永恆不變的特徵。可現在我們已經知道高山最終將被風化和剝蝕為平地,湖泊終將被沉積物和植被填滿,沙漠會隨著氣候的變化而行蹤不定。地球上的物質永無止境地運動著。暴露在地殼表面的大部分岩石都處在與其形成時不同的物理化學條件下,而且地表富含氧氣、二氧化碳和水,因而岩石極易發生變化和破壞。表現為整塊的岩石變為碎塊,或其成分發生變化,最終使堅硬的岩石變成鬆散的碎屑和土壤。礦物和岩石在地表條件下發生的機械碎裂和化學分解過程稱為風化。由於風、水流及冰川等動力將風化作用的產物搬離原地的作用過程叫做剝蝕。

地表岩石在原地發生機械破碎而不改變其化學成分也不新礦物的作用稱物理風化作用。如礦物岩石的熱脹冷縮、冰劈作用、層裂和鹽分結晶等作用均可使岩石由大塊變成小塊以至完全碎裂。化學風化作用是指地表岩石受到水、氧氣和二氧化碳的作用而發生化學成分和礦物成分變化,並產生新礦物的作用。主要通過溶解作用水化作用水解作用碳酸化作用和氧化作用等式進行。

雖然所有的岩石都會風化,但並不是都按同一條路徑或同一個速率發生變化。經過長年累月對不同條件下風化岩石的觀察,我們知道岩石特徵、氣候和地形條件是控制岩石風化的主要因素。不同的岩石具有不同的礦物組成和結構構造,不同礦物的溶解性差異很大。節理、層理和孔隙的分布狀況和礦物的粒度,又決定了岩石的易碎性和表面積。風化速率的差異,可以從不同岩石類型的石碑上表現出來。如花崗岩石碑,其成分主要是矽酸鹽礦物。這種石碑就能很好地抵禦化學風化。而大理岩石碑則明顯地容易遭受風化。

氣候因素主要是通過氣溫、降雨量以及生物的繁殖狀況而表現的。在溫暖和潮濕的環境下,氣溫高,降雨量大,植物茂密,微生物活躍,化學風化作用速度快而充分,岩石的分解向縱深發展可形成巨厚的風化層。在極地和沙漠地區,由於氣候乾冷,化學風化的作用不大,岩石易破碎為稜角狀的碎屑。最典型的例子,是將矗立於乾燥的埃及已35個世紀並保存完好的克列奧帕特拉花崗岩尖柱塔,搬移到空氣污染嚴重的紐約城中心公園之後,僅過了75年就已面目全非。

地勢的高度影響到氣候:中低緯度的高山區山麓與山頂的溫度、氣候差別很大,其生物界面貌顯著不同。因而風化作用也存在顯著的差別。地勢的起伏程度對於風化作用也具普遍意義:地勢起伏大的山區,風化產物易被外力剝蝕而使基岩裸露,加速風化。山坡的方向涉及到氣候和日照強度,如山體的向陽坡日照強,雨水多,而山體的背陽坡可能常年冰雪不化,顯然岩石的風化特點差別較大。

剝蝕與風化作用在大自然中相輔相成,只有當岩石被風化後,才易被剝蝕。而當岩石被剝蝕後,才能露出新鮮的岩石,使之繼續風化。風化產物的搬運是剝蝕作用的主要體現。當岩屑隨著搬運介質,如風或水等流動時,會對地表、河床及湖岸帶產生侵蝕。這樣也就產生更多的碎屑,為沉積作用提供了物質條件。

岩石在日光、水分、生物和空氣的作用下,逐漸被破壞和分解為沙和泥土,稱為風化作用。沙和泥土就是岩石風化後的產物。

一、岩石的風化現象。

岩石的疏鬆、剝落、裂縫這些都是岩石的風化現象。

二、岩石的產生風化的原因。礦物。

礦物的定義

地殼中存在的自然化合物和少數自然元素,具有相對固定的化學成分和性質。大部分是固態的(如鐵礦石),有的是液態的(如自然汞)或氣態的(如氦)。礦物是組成岩石的基礎,一般為固體,但也有液態的礦物,如汞(水銀)。

目前科學已經能夠製造出某些礦物,如人工水晶,人工鑽石等。

目前已知的礦物約有3000種左右,絕大多數是固態無機物,液態的(如石油、自然汞)、氣態的(如天然氣、二氧化碳和氦)以及固態有機物(如油頁岩、琥珀)僅占數十種。在固態礦物中,絕大部分都屬於晶質礦物,只有極少數(如水鋁英石)屬於非晶質礦物。來自地球以外其他天體的天然單質或化合物,稱為宇宙礦物。由人工方法所獲得的某些與天然礦物相同或類同的單質或化合物,則稱為合成礦物如人造寶石。礦物原料和礦物材料是極為重要的一類天然資源,廣泛套用於工農業及科學技術的各個部門。(圖:世界礦產主要金屬、非金屬礦產資源分布圖)

煤的化學成分很不穩定不是礦物,是典型的混合物。

礦物的概述

在科學發展史上,礦物的定義曾經多次演變。按現代概念,礦物首先必須是天然產出的物體﹐從而與人工製備的產物相區別。但對那些雖由人工合成,而各方面特性均與天然產出的礦物相同或密切相似的產物,如人造金剛石﹑人造水晶等,則稱為人工合成礦物。早先,曾將礦物局限於地球上由地質作用形成的天然產物。但是,近代對月岩及隕石的研究表明,組成它們的礦物與地球上的類同。有時只是為了強調它們的來源,稱它們為月岩礦物和隕石礦物,或統稱為宇宙礦物。另外還常分出地幔礦物,以與一般產於地殼中的礦物相區別。其次,礦物必須是均勻的固體。氣體和液體顯然都不屬於礦物。但有人把液態的自然汞列為礦物;一些學者把地下水﹑火山噴發的氣體也都視為礦物。至於礦物的均勻性則表現在不能用物理的方法把它分成在化學成分上互不相同的物質。這也是礦物與岩石的根本差別。此外,礦物這類均勻的固體內部的原子是作有序排列的,即礦物都是晶體。但早先曾把礦物僅限於“通常具有結晶結構”。這樣,作為特例,諸如水鋁英石等極少數天然產出的非晶質體,也被劃入礦物。這類在產出狀態和化學組成等方面的特徵均與礦物相似,但不具結晶構造的天然均勻固體特稱為似礦物(mineraloid)。似礦物也是礦物學研究的對象,往往並不把似礦物與礦物嚴格區分。每種礦物除有確定的結晶結構外,還都有一定的化學成分,因而還具有一定的物理性質。礦物的化學成分可用化學式表達,如閃鋅礦和石英可分別表示為ZnS和SiO2。但實際上所有礦物的成分都不是嚴格固定的,而是可在程度不等的一定範圍內變化。造成這一現象的原因是礦物中原子間的廣泛類質同象替代。例如閃鋅礦中總是有Fe2+替代部分的Zn2+,Zn:Fe(原子數)可在1:0到約6:5間變化。此時其化學式則寫為(Zn,Fe)S,石英的成分非常接近於純的SiO2,但仍含有微量的Al3+或Fe3+等類質同象雜質。最後,礦物一般是由無機作用形成的。早先曾把礦物全部限於無機作用的產物,以此與生物體相區別,後來發現有少數礦物,如石墨及某些自然硫和方解石,是有機起源的,但仍具有作為礦物的其餘全部特徵,故作為特例,仍歸屬於礦物。至於煤和石油,都是由有機作用所形成,且無一定的化學成分,故均非礦物,也不屬於似礦物。絕大多數礦物都是無機化合物和單質,僅有極少數是通過無機作用形成的有機礦物,如草酸鈣石[Ca(C2O4)·2H2O]等。

礦物的形態

礦物千姿百態,就其單體而言,它們的大小懸殊,有的肉眼或用一般的放大鏡可見(顯晶),有的需藉助顯微鏡或電子顯微鏡辨認(隱晶);有的晶形完好,呈規則的幾何多面體形態,有的呈不規則的顆粒存在於岩石或土壤之中。礦物單體形態大體上可分為三向等長(如粒狀)﹑二向延展(如板狀﹑片狀)和一向伸長(如柱狀﹑針狀﹑纖維狀)3種類型。而晶形則服從一系列幾何結晶學規律。

礦物單體間有時可以產生規則的連生,同種礦物晶體可以彼此平行連生,也可以按一定對稱規律形成雙晶,非同種晶體間的規則連生稱浮生或交生。

礦物集合體可以是顯晶或隱晶的。隱晶或膠態的集合體常具有各種特殊的形態,如結核狀(如磷灰石結核)﹑豆狀或鮞狀(如鮞狀赤鐵礦)﹑樹枝狀(如樹枝狀自然銅)﹑晶腺狀(如瑪瑙)﹑土狀(如高嶺石)等。礦物的物理性質。

長期以來,人們根據物理性質來識別礦物。如顏色﹑光澤﹑硬度﹑解理﹑比重和磁性等都是礦物肉眼鑑定的重要標誌。

作為晶質固體,礦物的物理性質取決於它的化學成分和晶體結構,並體現著一般晶體所具有的特性──均一性﹑對稱性和各向異性。

⑴礦物的顏色

礦物的顏色多種多樣。呈色的原因,一類是白色光通過礦物時,內部發生電子躍遷過程而引起對不同色光的選擇性吸收所致;另一類則是物理光學過程所致。導致礦物內電子躍遷的內因,最主要的是:色素離子的存在,如Fe3+使赤鐵礦呈紅色,V3+使釩榴石呈綠色等;是晶格缺陷形成“色心”,如螢石的紫色等。礦物學中一般將顏色分為3類:自色是礦物固有的顏色;他色是指由混入物引起的顏色;假色則是由於某種物理光學過程所致,如斑銅礦新鮮面為古銅紅色,氧化後因表面的氧化薄膜引起光的干涉而呈現藍紫色的錆色,礦物內部含有定向的細微包體,當轉動礦物時可出現顏色變幻的變彩,透明礦物的解理或裂隙有時可引起光的干涉而出現彩虹般的暈色等。

⑵條痕

指礦物在白色無釉的瓷板上劃擦時所留下的粉末痕跡。條痕色可消除假色,減弱他色,通常用於礦物鑑定。

⑶光澤

指礦物表面反射可見光的能力。根據平滑表面反光的由強而弱分為金屬光澤(狀若鍍克羅米金屬表面的反光,如方鉛礦)﹑半金屬光澤(狀若一般金屬表面的反光,如磁鐵礦)﹑金剛光澤(狀若鑽石的反光,如金剛石)和玻璃光澤(狀若玻璃板的反光,如石英)四級。金屬和半金屬光澤的礦物條痕一般為深色,金剛或玻璃光澤的礦物條痕為淺色或白色。此外,若礦物的反光面不平滑或呈集合體時,還可出現油脂光澤﹑樹脂光澤﹑蠟狀光澤﹑土狀光澤及絲絹光澤和珍珠光澤等特殊光澤類型。

⑷透明度

指礦物透過可見光的程度。影響礦物透明度的外在因素(如厚度﹑含有包裹體﹑表面不平滑等)很多,通常是在厚為0.03毫米薄片的條件下,根據礦物透明的程度,將礦物分為:透明礦物(如石英)﹑半透明礦物(如辰砂)和不透明礦物(如磁鐵礦)。許多在手標本上看來並不透明的礦物,實際上都屬於透明礦物如普通輝石等。一般具玻璃光澤的礦物均為透明礦物,顯金屬或半金屬光澤的為不透明礦物,具金剛光澤的則為透明或半透明礦物。

⑸斷口﹑解理與裂理

礦物在外力作用如敲打下,沿任意方向產生的各種斷面稱為斷口。斷口依其形狀主要有貝殼狀﹑鋸齒狀﹑參差狀﹑平坦狀等。在外力作用下礦物晶體沿著一定的結晶學平面破裂的固有特性稱為解理。解理面平行於晶體結構中鍵力最強的方向,一般也是原子排列最密的面網發生,並服從晶體的對稱性。解理面可用單形符號(見晶體)表示﹐如方鉛礦具立方體{100}解理﹑普通角閃石具{110}柱面解理等。根據解理產生的難易和解理面完整的程度將解理分為極完全解理(如雲母)﹑完全解理(如方解石)﹑中等解理(如普通輝石)﹑不完全解理(如磷灰石)和極不完全解理(如石英)。裂理也稱裂開,是礦物晶體在外力作用下沿一定的結晶學平面破裂的非固有性質。它外觀極似解理,但兩者產生的原因不同。裂理往往是因為含雜質夾層或雙晶的影響等並非某種礦物所必有的因素所致。

⑹硬度

是指礦物抵抗外力作用(如刻劃﹑壓入﹑研磨)的機械強度。礦物學中最常用的是摩氏硬度,它是通過與具有標準硬度的礦物相互刻劃比較而得出的。10種標準硬度的礦物組成了摩氏硬度計,它們從1度到10度分別為滑石﹑石膏﹑方解石﹑螢石﹑磷灰石﹑正長石﹑石英﹑黃玉﹑剛玉﹑金剛石。十個等級只表示相對硬度的大小,為了簡便還可以用指甲(2-2.5)﹑小鋼刀(6-7)﹑窗玻璃(5.5-6)作為輔助標準﹐粗略地定出礦物的摩氏硬度。另一種硬度為維氏硬度,它是壓入硬度,用顯微硬度儀測出,以千克/平方毫米表示。摩氏硬度H m與維氏硬度H v的大致關係是(kg/mm2),礦物的硬度與晶體結構中化學鍵型﹑原子間距﹑電價和原子配位等密切相關。

⑺比重

指礦物與同體積水在4℃時重量之比。礦物的比重取決於組成元素的原子量和晶體結構的緊密程度。雖然不同礦物的比重差異很大,琥珀的比重小於1,而自然銥的比重可高達22.7,但大多數礦物具有中等比重(2.5~4)。礦物的比重可以實測,也可以根據化學成分和晶胞體積計算出理論值。

⑻彈性﹑撓性﹑脆性與延展性

某些礦物(如雲母)受外力作用彎曲變形,外力消除,可恢復原狀,顯示彈性;而另一些礦物(如綠泥石)受外力作用彎曲變形,外力消除後不再恢復原狀,顯示撓性。大多數礦物為離子化合物,它們受外力作用容易破碎﹐顯示脆性。少數具金屬鍵的礦物(如自然金),具延性(拉之成絲)﹑展性(捶之成片)。

⑼磁性

根據礦物內部所含原子或離子的原子本徵磁矩的大小及其相互取向關係的不同,它們在被外磁場所磁化時表現的性質也不相同,從而可分為抗磁性(如石鹽)﹑順磁性(如黑雲母)﹑反鐵磁性(如赤鐵礦)﹑鐵磁性(如自然鐵)和亞鐵磁性(如磁鐵礦)。由於原子磁矩是由不成對電子引起的,因而凡只含具飽和的電子殼層的原子和離的礦物都是抗磁的,而所有具有鐵磁性或亞鐵磁性﹑反鐵磁性﹑順磁性的礦物都是含過渡元素的礦物。但若所含過渡元素離子中不存在不成對電子時(如毒砂),則礦物仍是抗磁的。具鐵磁性和亞鐵磁性的礦物可被永久磁鐵所吸引;具亞鐵磁性和順磁性的礦物則只能被電磁鐵所吸引。礦物的磁性常被用於探礦和選礦。

⑽發光性

些礦物受外來能量激發能發出可見光。加熱﹑摩擦以及陰極射線﹑紫外線﹑X 射線的照射都是激發礦物發光的因素。激發停止,發光即停止的稱為螢光;激發停止發光仍可持續一段時間的稱為燐光。礦物發光性可用於礦物鑑定﹑找礦和選礦。

礦物的化學成分和晶體結構

化學組成和晶體結構是每種礦物的基本特徵,是決定礦物形態和物理性質以及成因的根本因素,也是礦物分類的依據,礦物的利用也與它們密不可分。

⑴礦物與地殼的化學組成

化學元素是組成礦物的物質基礎。人們對地殼中產出的礦物研究較為充分。地殼中各種元素的平均含量(克拉克值)不同。氧﹑矽﹑鋁﹑鐵﹑鈣﹑鈉﹑鉀﹑鎂八種元素就占了地殼總重量的97%,其中氧約占地殼總重量的一半(49%),矽占地殼總重的1/4以上(26%)。故地殼中上述元素的氧化物和氧鹽(特別是矽酸鹽)礦物分布最廣,它們構成了地殼中各種岩石的主要組成礦物。其餘元素相對而言雖微不足道,但由於它們的地球化學性質不同,有些趨向聚集,有的趨向分散。某些元素如銻﹑鉍﹑金﹑銀﹑汞等克拉克值甚低,均在千萬分之二以下,但仍聚集形成獨立的礦物種,有時並可富集成礦床;而某些元素如銣﹑鎵等的克拉克值雖遠高於上述元素,但趨於分散,不易形成獨立礦物種,一般僅以混入物形式分散於某些礦物成分之中。

⑵礦物晶體結構中原子的堆積(排列)與配位數

共價鍵的礦物(如自然金屬﹑鹵化物及氧化物礦物等)晶體結構中,原子常呈最緊密堆積(見晶體),配位數即原子或離子周圍最鄰近的原子或異號離子數,取決於陰陽離子半徑的比值。當共價鍵為主時(如硫化物礦物),配位數和配位型式取決於原子外層電子的構型,即共價鍵的方向性和飽和性。對於同一種元素而言,其原子或離子的配位數還受到礦物形成時的物理化學條件的影響。溫度增高,配位數減小,壓力增大,配位數增大。礦物晶體結構可以看成是配位多面體(把圍繞中心原子並與之成配位關係的原子用直線聯結起來獲得的幾何多面體)共角頂﹑共棱或共面聯結而成。

⑶礦物成分和晶體結構的變化

一定的化學成分和一定的晶體結構構成一個礦物種。但化學成分可在一定範圍內變化。礦物成分變化的原因,除那些不參加晶格的機械混入物﹑膠體吸附物質的存在外,最主要的是晶格中質點的替代,即類質同象替代,它是礦物中普遍存在的現象。可相互取代﹑在晶體結構中占據等同位置的兩種質點,彼此可以呈有序或無序的分布(見有序-無序)。

礦物的晶體結構不僅取決於化學成分,還受到外界條件的影響。同種成分的物質,在不同的物理化學條件(溫度﹑壓力﹑介質)下可以形成結構各異的不同礦物種。這一現象稱為同質多象。如金剛石和石墨的成分同樣是碳單質,但晶體結構不同,性質上也有很大差異。它們被稱為碳的不同的同質多象變體。如果化學成分相同或基本相同,結構單元層也相同或基本相同,只層的疊置層序有所差異時,則稱它們為不同的多型。如石墨2H 多型(兩層一個重複周期,六方晶系)和3R 多型(三層一個重複周期,三方晶系)。不同多型仍看作同一個礦物種。

⑷礦物的晶體化學式

礦物的化學成分一般採用晶體化學式表達。它既表明礦物中各種化學組分的種類﹑數量,又反映了原子結合的情況。如鐵白雲石Ca(Mg,Fe,Mn)[CO3]2,圓括弧內按含量多少依次列出相互成類質同象替代的元素,彼此以逗號分開;方括弧內為絡陰離子團。當有水分子存在時,常把它寫在化學式的最後,並以圓點與其他組分隔開,如石膏Ca[SO4]·2H2O。

礦物的成因產狀

礦物是化學元素通過地質作用等過程發生運移﹑聚集而形成。具體的作用過程不同,所形成的礦物組合也不相同。礦物在形成後,還會因環境的變遷而遭受破壞或形成新的礦物。

⑴形成礦物的地質作用

岩漿作用發生於溫度和壓力均較高的條件下。主要從岩漿熔融體中結晶析出橄欖石﹑輝石﹑閃石﹑雲母﹑長石﹑石英等主要造岩礦物,它們組成了各類岩漿岩。同時還有鉻鐵礦﹑鉑族元素礦物﹑金剛石﹑釩鈦磁鐵礦﹑銅鎳硫化物以及含磷﹑鋯﹑鈮﹑鉭的礦物形成。偉晶作用中礦物在700~400℃﹑外壓大於內壓的封閉系統中生成。所形成的礦物顆粒粗大。除長石﹑雲母﹑石英外,還有富含揮發組分氟﹑硼的礦物如黃玉﹑電氣石,含鋰﹑鈹﹑銣﹑銫﹑鈮﹑鉭﹑稀土等稀有元素的礦物如鋰輝石﹑綠柱石和含放射性元素的礦物形成。熱液作用中礦物從氣液或熱水溶液中形成。高溫熱液(400~300℃)以鎢﹑錫的氧化物和鉬﹑鉍的硫化物為代表;中溫熱液(300~200℃)以銅﹑鉛﹑鋅的硫化物礦物為代表;低溫熱液(200~50℃)以砷﹑銻﹑汞的硫化物礦物為代表。此外,熱液作用還有石英﹑方解石﹑重晶石等非金屬礦物形成。

風化作用中早先形成的礦物可在陽光﹑大氣和水的作用下化學風化成一些在地表條件下穩定的其他礦物,如高嶺石﹑硬錳礦﹑孔雀石﹑藍銅礦等。金屬硫化物礦床經風化產生的CuSO4和FeSO4溶液,滲至地下水面以下,再與原生金屬硫化物反應,可產生含銅量很高的輝銅礦﹑銅藍等,從而形成銅的次生富集帶。化學沉積中,由真溶液中析出的礦物如石膏﹑石鹽﹑鉀鹽﹐硼砂等;由膠體溶液凝聚生成的礦物如鮞狀赤鐵礦﹑腎狀硬錳礦等。生物沉積可形成如硅藻土(蛋白石)等。

區域變質作用形成的礦物趨向於結構緊密﹑比重大和不含水。在接觸變質作用中,當圍岩為碳酸鹽岩石時,可形成夕卡岩,它由鈣﹑鎂﹑鐵的矽酸鹽礦物如透輝石﹑透閃石﹑石榴子石﹑符山石﹑矽灰石﹑矽鎂石等組成。後期常伴隨著熱液礦化形成銅﹑鐵﹑鎢和多金屬礦物的聚集。圍岩為泥質岩石時可形成紅柱石﹑堇青石等礦物。

⑵ 礦物的組合﹑共生﹑伴生﹑標型特徵

礦物在空間上的共存稱為組合。組合中的礦物屬於同一成因和同一成礦期形成的,則稱它們是共生,否則稱為伴生。研究礦物的共生﹑伴生﹑組合與生成順序,有助於探索礦物的成因和生成歷史。就同一種礦物而言,在不同的條件下形成時,其成分﹑結構﹑形態或物性上可能顯示不同的特徵,稱為標型特徵,它是反映礦物生成和演化歷史的重要標誌。

礦物的分類

礦物的分類方法很多。早期曾採用純以化學成分為依據的化學成分分類。以後有人提出以元素的地球化學特徵為依據的地球化學分類,以礦物的工業用途為依據的工業礦物分類等。一般廣泛採用以礦物本身的成分和結構為依據的晶體化學分類。

從礦物的分類及礦物成分來看,礦物分成單質和化合物兩種。單質是由一種元素組成的礦物,如金剛石成分是碳,自然金成分是Au。化合物則是由陰陽離子組成的,根據陰離子成分不同分為若干類:

化合物類型 陰離子成分

硫化物 S-2

氧化物 O-2

氫氧化物(OH)-1

鹵化物 F-1、Cl-1、Br-1、I-1

碳酸鹽[CO3]-2

硫酸鹽[SO4]-2

硝酸鹽[NO3]-1

鉻酸鹽[CrO4]-2

鎢、鉬酸鹽[WO4]-2 、[MoO4]-2

磷、砷、釩酸鹽 [PO4]-3 、[AsO4]-3、[VO4]-3

矽酸鹽 [SiO4]-4

硼酸鹽[BO3]-3

亞硒、亞碲酸鹽 [SeO3]-2、[TeO3]-2

硒、碲酸鹽 [SeO4]-2、[TeO4]-2

碘酸鹽 [IO3]-2

氧、氫氧鹵化物 [O2Cl2]-6 、[(OH)3Cl]-4

硫鹵化物 S2Cl2

以上各類化合物加上單質礦物共十八類。這些礦物中矽酸鹽礦物種數最多,占整個礦物種類的24%,占地殼總重量75%,硫鹵化物最少,只有一種。

礦物分為下列大類:自然元素礦物﹑硫化物及其類似化合物礦物﹑鹵化物礦物﹑氧化物及氫氧化物礦物﹑含氧鹽礦物(包括矽酸鹽﹑硼酸鹽﹑碳酸鹽﹑磷酸鹽﹑砷酸鹽﹑釩酸鹽﹑硫酸鹽﹑鎢酸鹽﹑鉬酸鹽﹑硝酸鹽﹑鉻酸鹽礦物等)。

新礦物。世界上已知礦物約3000種。隨著研究手段的改進,新礦物種的發現逐年增多。若以20年為一個計算單位,則新礦物的發現,1880~1899年為87種,1900~1919年為185種,1920~1939年為256種,1940~1959年為347種。80年代平均每年發現新礦物約40~50種。中國從1958年發現香花石開始,至1989年已發現新礦物約70種。

礦物的命名

中國習慣上把具金屬或半金屬光澤的﹑或可以從中提煉某種金屬的礦物,稱為某某“礦”﹐如方鉛礦﹑黃銅礦;把具玻璃或金剛光澤的礦物稱為某某“石”,如方解石﹑孔雀石;把硫酸鹽礦物常稱為某“礬”,如膽礬﹑鉛礬;把玉石類礦物常稱為某“玉”,如硬玉﹑軟玉;把地表鬆散礦物常稱為某“華”,如砷華﹑鎳華、鎢華。至於具體命名則又有各種不同的依據。有的依據礦物本身的特徵,如成分﹑形態﹑物性等命名﹔有的以發現﹑產出該礦物的地點或某人的名字命名。例如鋰鈹石liberite(成分)﹑金紅石rutile(顏色)﹑重晶石barite(比重大)﹑十字石staurolite(雙晶形態)﹑香花石hsianghualite(發現於湖南臨武香花嶺)﹑彭志忠石 pengzhizhongite(紀念中國結晶學家和礦物學家彭志忠)等。礦物的中文名稱除少數由中國學者發現和命名(如鋰鈹石﹑香花石﹑彭志忠石等)及沿用中國古代名稱(如石英﹑雲母﹑方解石﹑雄黃等)者外,主要均來源於外文名稱。其中有的意譯,如上述的金紅石﹑重晶石﹑十字石等;少數為音譯,如埃洛石(halloysite)等;大多數則系根據礦物成分,間或考慮物性﹑形態等特徵另行定名,如矽灰石(原文wollastonite為紀念英國化學家W.H.Wollaston而來)﹑黝銅礦(原文 tetrahedrite,意譯應為四面體礦)等;還有音譯首音節加其他考慮的譯名,如拉長石(原文labradorite來源於加拿大地名Labrador)等。

礦物的比重

礦物的比重是指純淨、均勻的單礦物在空氣中的重量與同體積水在4℃時重量之比。礦物的密度(D)是指礦物單位體積的重量,度量單位為克/立方厘米(g/cm3)。礦物的比重在數值上等於礦物的密度。

礦物比重的變化幅度很大,可由小於1(如琥珀)至23(如餓釘族礦物)。自然金屬元素礦物的比重最大,鹽類礦物比重較小。

礦物比重可分為三級:

輕級 比重小於2.5。如石墨(2.5)、自然硫(2.05-2.08)、食鹽(2.1-2.5)、石膏(2.3)等。

中級 比重由2.5到4。大多數礦物的比重屬於此級。如石英(2.65)、斜長石(2.61-2.76)、金剛石(3.5)等。

重級 比重大於4。如重晶石(4.3-4.7)、磁鐵礦(4.6-5.2)、白鎢礦(5.8-6.2)、方鉛礦(7.4-7.6)、自然金(14.6-18.3)等。

礦物的比重決定於其化學成分和內部結構,主要與組成元素的原子量、原子和離子半徑及堆積方式有關。此外礦物的形成條件--溫度和壓力對礦物的比重的變化也起重要的作用。

應該指出,同一種礦物,由於化學成分的變化、類質同象混入物的代換、機械混入物及包裹體的存在、洞穴與裂隙中空氣的吸附等等對礦物的比重均會造成影響。所以,在測定礦物比重時,必須選擇純淨、未風化礦物。

相關詞條

熱門詞條

聯絡我們