定義
若為的聚點,則對於的任意鄰域,有,還可根據的基數而將聚點分類。當的基數是以上時,稱為的 凝聚點(condensationpoint),當對所有的鄰域的基數都等於的基數時,稱為的 完全聚點或 最大聚 點 。
相關概念
定義1 聚點為子集A的 聚點(可能),是指的任一開鄰域含的點,等價於含於的閉包(當第1可數時,等價於是中點列的極限點;進而為第1可數且時(如度量拓撲),等價於為A的互異點構成的點列的極限)。聚點集稱 導集。非聚點稱為 孤立點。,即閉包=導集U原集(觸點=聚點和原集點)。A為閉集(即)。A的閉包的余集稱為A的外部(即非觸點集),閉包與余集閉包之交為邊界。若閉包則稱A在X中 稠密。點列收斂於(稱為 極限)是指:對於的任一鄰域,存在,使當時。點稱為A的 完全(最大)聚點,是指的任一鄰域U與A的交的基數等於A的基數。一點為閉集( 一點閉集)若且唯若中任一點有開鄰域不含。X中任一點為閉集相當於X為。
定義2 設為的一點,A為X的子集,若,則稱為A的 聚點(英accumulation point)。A的聚點集稱為A的 導集(derived set),以或表示之。與的任意鄰域最少含有以外的的一個點,二者是等價的。的點稱為的 孤立點(isolated point),僅由孤立點組成的集合(時)稱為 孤點集(isolated set)或 離散集(discrete set)。當的任意非空子集都具有孤立點時稱為 無核集(scattered set)。當不具有孤立點時(時),稱為 自密集(dense in itself)。的自密的子集中最大者稱為的 自密核(德insichdichterKern)。當時稱為 完備集(perfect set) 。
緊緻性 這是中有界集的推廣。若拓撲空間X的任意開覆蓋有有限子覆蓋,則稱X為 緊(致)的。等價於以下每一條:(1)若一閉集族的任意有限子族有交,則全族有交;(2)無限子集總有完全聚點;(3)有向點族總有收斂子族(點族有向是指:點族有半序,且其有限子集上方有界(不一定屬於此子集))。子集A是 緊子集是指作為子拓撲空間A是緊的(相當於A的“開集屬於X的開覆蓋”總有有限子覆蓋)。緊拓撲空間的閉子集是緊的。Hausdorff空間中緊子集是閉的。故緊Hausdorff空間正規。緊X上的連續映射的象緊;再若為Hausdorff,則為閉映射;再若為雙射,則為同胚。直積空間是緊的若且唯若各分空間是緊的。緊Hausdorff空間是正規的,可賦予距離等價於第2可數。離散空間中僅有限集是緊的。非緊的X可增點而“一點緊化”:開集為原開集,以及含的子集而余集在X中緊閉者 。