場論中的路徑積分導引

eratin eratin eratin

作者:
(德)莫澤樂(Mosel,U.) 編著
內容簡介:
本書是關於經典場和量子場路徑積分的初級讀本,寫作風格簡明扼要,重點介紹量子場的路徑積分。本書介紹了場論最新發展的基本理論,可以作為一學期強化課程的教材使用。場論的路徑積分方法有助於嚴格研究一些基本數學問題及其在強子物理、粒子物理和核物理中的套用,本書可供數學專業和理論物理專業的學生使用。本書是對作者《場、對稱性和夸克》(Springer,1999)一書的補充,需要讀者具有相對論量子力學方面的知識。
目錄:
Part Ⅰ Non-Relativistic Quantum Theory
1 The Path Integral in Quantum Theory
1.1 propagator of the Schrodinger Equation
1.2 Propagator as Path Integral
1.3 Quadratic Hamiltonians
1.3.1 Cartesian Metric
1.3.2 Non-Cartesian Metric
1.4 Classical Interpretation
2 Perturbation Theory
2.1 Free Propagator
2.2 Perturbative Expansion
2.3 Application to Scattering
3 Generating Functionals
3.1 Groundstate-to-Groundstate Transitions
3.1.1 Generating Functional
3.2 Functional Derivatives of Gs-Gs Transition Amplitudes
PartⅡ Relativistic Quantum Field Theory
4 Relativistic Fields
4.1 Equations of Motion
4.1.1 Examples
4.2 Symmetries and Conservation Laws
4.2.1 Geometrical Space-Time Symmetries
4.2.2 Internal Symmetries
5 Path Integrals for Scalar Fields
5.1 Generating Functional for Fields
5.1.1 Euclidean Representation
6 Evaluation of Path Integrals
7 Transition Rates and Green's Functions
8 Green's Functions
9 Perturbative Theory
10 Green's Functions for Fermions
11 Interacting Fields
Part Ⅲ Gauge Field Theory
12 Path Integrals for QED
13 path Integrals for Gauge Fields
14 Examples for Gauge Field Theories
Units and Metric
Functionals
Renormalization Integrals
Gaussian Grassmann Integration
References
Indes

相關詞條

相關搜尋

熱門詞條

聯絡我們