定義
在有向圖中,即使存在從結點 到 的通路,卻未必存在從 到 的通路,即頂點之間的可達關係沒有對稱性。因此,有向圖的連通性分為強連通、 單向連通和 弱連通3種。
定義1設D是一個有向圖,如果D中任意兩個結點都彼此可達,則稱D為 強連通圖。如果D中任意兩點 之間,有 到 可達或 到 可達(稱為單向可達),則稱D為 單向連通圖。如果有向圖的底圖是無向連通圖,則稱D為 弱連通圖。
注意:強連通圖必是單向連通圖,單向連通圖必是弱連通圖。但反之未必。
例1 圖1(a)是強連通圖,圖1(b)是單向連通圖,圖1(c)是弱連通圖,圖1(d)不是弱連通圖。
定義2設是有向圖,G的極大的單向連通子圖稱為G的 單向連通分 支(unilateral connected component)。
由定義知,如圖2所示有兩個單向連通分支,分別是G[1,2,3,4,5],G[5,6]。
注意:有向圖G的節點可以位於G的不同的單向連通分支中。
單向連通圖的判定
關於單向連通圖的判定,有如下定理。
設 是有向圖,則 單向連通若且唯若 中存在一條路,它通過所有節點。
證法一: ( )若能證明命題“對於任意 均存在一個W中節點在G中到W中其餘節點都有路”,則定理結論成立,因為先取W=V,存在 到其餘V中節點有路,再取 ,存在 到其餘 節點有路.這樣一直下去,就可以得到一條從 到 , 到 , 到 的一條路,其中 (但這條路不一定是軌跡)。
假定上述命題不成立,令 是使其不成立的元素個數最少的,這時k≥3,根據假設 使命題成立,於是必存在 中一個節點,不妨設為 到其餘節點 有路,而假設 到 是沒有路的,否則與W的假設矛盾。另一方面,由於 到其餘節點 有路,所以 到 沒有路,否則 到 都有路,由於 到 沒有路,而 到 也沒有路,與已知G是單向連通圖矛盾。
( )顯然。
證法二:充分性:若G中有一迴路,它至少經過每個頂點一次。則圖中任何兩個頂點都是相互可達的,可見圖G是強連通圖。
必要性:若有向圖G是強連通的,則圖中任何兩個頂點都是相互可達的,故可作出一迴路它經過圖中的所有頂點。否則,必有一迴路不通過某個頂點v,因此v與迴路上的個結點均互不可達,這與G是強連通圖矛盾。
例2 判斷圖3中兩有向圖的連通性。
解:圖3(a)中存在著經過所有點的迴路,故圖3(a)是強連通圖,圖3(b)沒有a到其他頂點的通路,故圖3(b)是單向連通圖。