N溝MOS電晶體
金屬-氧化物-半導體(Metal-Oxide-Semiconductor)結構的電晶體簡稱MOS電晶體,有P型MOS管和N型MOS管之分。MOS管構成的積體電路稱為MOS積體電路,而PMOS管和NMOS管共同構成的互補型MOS集成電路即為CMOS-IC。
由p型襯底和兩個高濃度n擴散區構成的MOS管叫作n溝道MOS管,該管導通時在兩個高濃度n擴散區間形成n型導電溝道。n溝道增強型MOS管必須在柵極上施加正向偏壓,且只有柵源電壓大於閾值電壓時才有導電溝道產生的n溝道MOS管。n溝道耗盡型MOS管是指在不加柵壓(柵源電壓為零)時,就有導電溝道產生的n溝道MOS管。
NMOS積體電路是N溝道MOS電路,NMOS積體電路的輸入阻抗很高,基本上不需要吸收電流,因此,CMOS與NMOS集成電路連線時不必考慮電流的負載問題。NMOS積體電路大多採用單組正電源供電,並且以5V為多。CMOS積體電路只要選用與NMOS積體電路相同的電源,就可與NMOS積體電路直接連線。不過,從NMOS到CMOS直接連線時,由於NMOS輸出的高電平低於CMOS積體電路的輸入高電平,因而需要使用一個(電位)上拉電阻R,R的取值一般選用2~100KΩ。
N溝道增強型MOS管的結構
在一塊摻雜濃度較低的P型矽襯底上,製作兩個高摻雜濃度的N+區,並用金屬鋁引出兩個電極,分別作漏極d和源極s。
然後在半導體表面覆蓋一層很薄的二氧化矽(SiO2)絕緣層,在漏——源極間的絕緣層上再裝上一個鋁電極,作為柵極g。
在襯底上也引出一個電極B,這就構成了一個N溝道增強型MOS管。MOS管的源極和襯底通常是接在一起的(大多數管子在出廠前已連線好)。
它的柵極與其它電極間是絕緣的。
圖(a)、(b)分別是它的結構示意圖和代表符號。代表符號中的箭頭方向表示由P(襯底)指向N(溝道)。P溝道增強型MOS管的箭頭方向與上述相反,如圖(c)所示。
N溝道增強型MOS管的工作原理
(1)vGS對iD及溝道的控制作用
① vGS=0 的情況
從圖1(a)可以看出,增強型MOS管的漏極d和源極s之間有兩個背靠背的PN結。當柵——源電壓vGS=0時,即使加上漏——源電壓vDS,而且不論vDS的極性如何,總有一個PN結處於反偏狀態,漏——源極間沒有導電溝道,所以這時漏極電流iD≈0。
② vGS>0 的情況
若vGS>0,則柵極和襯底之間的SiO2絕緣層中便產生一個電場。電場方向垂直於半導體表面的由柵極指向襯底的電場。這個電場能排斥空穴而吸引電子。
排斥空穴:使柵極附近的P型襯底中的空穴被排斥,剩下不能移動的受主離子(負離子),形成耗盡層。吸引電子:將 P型襯底中的電子(少子)被吸引到襯底表面。
(2)導電溝道的形成:
當vGS數值較
小,吸引電子的能力不強時,漏——源極之間仍無導電溝道出現,如圖1(b)所示。vGS增加時,吸引到P襯底表面層的電子就增多,當vGS達到某一數值時,這些電子在柵極附近的P襯底表面便形成一個N型薄層,且與兩個N+區相連通,在漏——源極間形成N型導電溝道,其導電類型與P襯底相反,故又稱為反型層,如圖1(c)所示。vGS越大,作用於半導體表面的電場就越強,吸引到P襯底表面的電子就越多,導電溝道越厚,溝道電阻越小。開始形成溝道時的柵——源極電壓稱為開啟電壓,用VT表示。
上面討論的N溝道MOS管在vGS<VT時,不能形成導電溝道,管子處於截止狀態。只有當vGS≥VT時,才有溝道形成。這種必須在vGS≥VT時才能形成導電溝道的MOS管稱為增強型MOS管。溝道形成以後,在漏——源極間加上正向電壓vDS,就有漏極電流產生。
vDS對iD的影響
如圖(a)所示,當vGS>VT且為一確定值時,漏——源電壓vDS對導電溝道及電流iD的影響與結型場效應管相似。
漏極電流iD沿溝道產生的電壓降使溝道內各點與柵極間的電壓不再相等,靠近源極一端的電壓最大,這裡溝道最厚,而漏極一端電壓最小,其值為VGD=vGS-vDS,因而這裡溝道最薄。但當vDS較小(vDS0,VP<vGS<0的情況下均能實現對iD的控制,而且仍能保持柵——源極間有很大的絕緣電阻,使柵極電流為零。這是耗盡型MOS管的一個重要特點。圖(b)、(c)分別是N溝道和P溝道耗盡型MOS管的代表符號。
漏極電流iD沿溝道產生的電壓降使溝道內各點與柵極間的電壓不再相等,靠近源極一端的電壓最大,這裡溝道最厚,而漏極一端電壓最小,其值為VGD=vGS-vDS,因而這裡溝道最薄。但當vDS較小(vDS<vGS–VT)時,它對溝道的影響不大,這時只要vGS一定,溝道電阻幾乎也是一定的,所以iD隨vDS近似呈線性變化。
隨著vDS的增大,靠近漏極的溝道越來越薄,當vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)時,溝道在漏極一端出現預夾斷,如圖2(b)所示。再繼續增大vDS,夾斷點將向源極方向移動,如圖2(c)所示。由於vDS的增加部分幾乎全部降落在夾斷區,故iD幾乎不隨vDS增大而增加,管子進入飽和區,iD幾乎僅由vGS決定。
N溝道增強型MOS管的特性曲線、電流方程及參數
(1) 特性曲線和電流方程
1)輸出特性曲線
N溝道增強型MOS管的輸出特性曲線如圖1(a)所示。與結型場效應管一樣,其輸出特性曲線也可分為可變電阻區、飽和區、截止區和擊穿區幾部分。
2)轉移特性曲線
轉移特性曲線如圖1(b)所示,由於場效應管作放大器件使用時是工作在飽和區(恆流區),此時iD幾乎不隨vDS而變化,即不同的vDS所對應的轉移特性曲線幾乎是重合的,所以可用vDS大於某一數值(vDS>vGS-VT)後的一條轉移特性曲線代替飽和區的所有轉移特性曲線.
3)iD與vGS的近似關係
與結型場效應管相類似。在飽和區內,iD與vGS的近似關係式為
式中IDO是vGS=2VT時的漏極電流iD。
(2)參數
MOS管的主要參數與結型場效應管基本相同,只是增強型MOS管中不用夾斷電壓VP ,而用開啟電壓VT表征管子的特性。
N溝道耗盡型MOS管的基本結構
(1)結構:
N溝道耗盡型MOS管與N溝道增強型MOS管基本相似。
(2)區別:
耗盡型MOS管在vGS=0時,漏——源極間已有導電溝道產生,而增強型MOS管要在vGS≥VT時才出現導電溝道。
(3)原因:
製造N溝道耗盡型MOS管時,在SiO2絕緣層中摻入了大量的鹼金屬正離子Na+或K+(製造P溝道耗盡型MOS管時摻入負離子),如圖1(a)所示,因此即使vGS=0時,在這些正離子產生的電場作用下,漏——源極間的P型襯底表面也能感應生成N溝道(稱為初始溝道),只要加上正向電壓vDS,就有電流iD。
如果加上正的vGS,柵極與N溝道間的電場將在溝道中吸引來更多的電子,溝道加寬,溝道電阻變小,iD增大。反之vGS為負時,溝道中感應的電子減少,溝道變窄,溝道電阻變大,iD減小。當vGS負向增加到某一數值時,導電溝道消失,iD趨於零,管子截止,故稱為耗盡型。溝道消失時的柵-源電壓稱為夾斷電壓,仍用VP表示。與N溝道結型場效應管相同,N溝道耗盡型MOS管的夾斷電壓VP也為負值,但是,前者只能在vGS0,VP<vGS<0的情況下均能實現對iD的控制,而且仍能保持柵——源極間有很大的絕緣電阻,使柵極電流為零。這是耗盡型MOS管的一個重要特點。圖(b)、(c)分別是N溝道和P溝道耗盡型MOS管的代表符號。
(4)電流方程:
在飽和區內,耗盡型MOS管的電流方程與結型場效應管的電流方程相同,即: