概述
食肉植物多為綠色植物,能將捕獲的動物分解,這個過程類似動物的消化過程。分解的最終產物,尤其是氮的化合物及鹽類為植物所吸收。食肉植物多數能進行光合作用,又能消化動物蛋白質,能適應極端的環境。其誘捕工具多為葉的變態。半數以上的食肉植物,其特點是花兩側對稱。已知食肉植物約有400種。大部分食肉植物都生長在潮濕荒地、酸沼、樹沼、泥岸等水分豐富而土壤酸性缺乏氮素的環境。無論水生、陸生或兩棲,食肉植物均有相似的生態特點。大部分食肉植物是多年生草本,高不過30厘米,常僅10至15厘米。各別種類有長至1米的,最小的可以隱藏在水蘚沼澤的蘚類中。 有些食肉植物幾乎遍及全世界。
植物藉由根部吸收水份及礦物質,由葉片吸收二氧化碳,再經由陽光所推動的光合作用將二氧化碳、水及礦物質轉化為碳水化合物及其他的有機物,植物因而得以成長。 採用粘著方式來捕蟲的食蟲植物,則採用氣味來吸引昆蟲 。毛氈苔、彩虹草、捕蟲蓳能散發出特別的氣味,只是這些氣味通常過於微量,因此人不太容易聞到。
分類
食蟲植物分類
食蟲植物的分類都處於不斷的變化之中,在克朗奎斯特系統(Cronquistsystem)中,基於其輻射對稱的花朵和特有的捕蟲器,茅膏菜科(Droseraceae)和豬籠草科(Nepenthaceae)被歸於豬籠草目(Nepenthales)中。瓶子草科(Sarraceniaceae)被歸入豬籠草目或瓶子草目(Sarraceniales)中。腺毛草科(Byblidaceae)、土瓶草科(Cephalotaceae)和捕蟲幌科(Roridulaceae)被歸入虎耳草目(Saxifragales);狸藻科(Lentibulariaceae)被歸入玄參目(Scrophulariales),後併入唇形目(Lamiales)。
食蟲植物
在更先進的分類系統中,如被子植物種系發生學組(APG,AngiospermPhylogenyGroup)中,科下分類被保留了下來,但它們已被重新劃分為幾個目。露松屬(Drosophyllum)被從茅膏菜科中獨立出來,其可能與雙鉤葉科(Dioncophyllaceae)之間具有密切的聯繫。
分類如下(只包括食蟲屬部分),已絕種物種以劍號(†)加注。
雙子葉植物
菊目(Asterales)
花柱草科(Stylidiaceae)
花柱草屬(Stylidium)
石竹目(Caryophyllales)
雙鉤葉科(Dioncophyllaceae)
穗葉藤屬(Triphyophyllum)
露葉茅膏菜科(Drosophyllaceae)
露松屬(Drosophyllum)
茅膏菜科(Droseraceae)
貉藻屬(Aldrovanda)
捕蠅草屬(Dionaea)
茅膏菜屬(Drosera)
茅膏菜花粉屬(Droserapollis)
茅膏菜粉屬(Droserapites)
茅膏菜石屬(Droseridites)
菲氏花粉屬(Fischeripollis)
古貉藻屬(Palaeoaldrovanda)
薩州花粉屬(Saxonipollis)
豬籠草科(Nepenthaceae)
豬籠草屬(Nepenthes)
杜鵑花目(Ericales)
捕蟲幌科(Roridulaceae)
捕蟲幌屬(Roridula)
瓶子草科(Sarraceniaceae)
古瓶子草屬(Archaeamphora)
瓶子草屬(Sarracenia)
眼鏡蛇瓶子草屬(Darlingtonia)
太陽瓶子草屬(Heliamphora)
唇形目(Lamiales)
腺毛草科(Byblidaceae)
腺毛草屬(Byblis)
狸藻科(Lentibulariaceae)
捕蟲堇屬(Pinguicula)
螺鏇狸藻屬(Genlisea)
狸藻屬(Utricularia)
角胡麻科(Martyniaceae)
單角胡麻屬(Ibicella)
酢漿草目(Oxalidales)
土瓶草科(Cephalotaceae)
土瓶草屬(Cephalotus)
單子葉植物
禾本目(Poales)
鳳梨科(Bromeliaceae)
布羅基鳳梨屬(Brocchinia)
嘉寶鳳梨屬(Catopsis)
谷精草科(Eriocaulaceae)
食蟲谷精草屬(Paepalanthus)
捕蟲機制
食蟲植物具有5種基本的捕蟲機制。
(1)具有含消化酶或細菌消化液的籠狀或瓶狀捕蟲器。
(2)周身布滿黏稠液滴的黏液捕蟲器。
(3)快速關閉的夾狀捕蟲器。
(4)能產生真空而吸入獵物的囊狀捕蟲器。
(5)具有向內延伸的毛須而將獵物逼入消化器官的龍蝦籠狀捕蟲器。
這些捕蟲器分為主動捕蟲器和被動捕蟲器,這取決於其是否有幫助捕獲獵物的動作出現。例如,穗葉藤屬(Triphyophyllum)植物會分泌黏液,但其葉片不能作出向獵物捲曲的動作,因此穗葉藤屬植物的捕蟲器屬於被動捕蟲器。相反,茅膏菜的葉片通過可以快速地生長而將獵物捲起。這種快速的伸長是通過細胞分裂實現的,而非細胞伸長。因此茅膏菜的捕蟲器屬於主動捕蟲器。
籠狀或瓶狀捕蟲器
至少有四個屬的植物獨立進化出了籠狀或瓶狀捕蟲器。
豬籠草屬
豬籠草屬(Nepenthes)植物的籠狀捕蟲籠生長於籠蔓末端。主要捕食對象為昆蟲。馬來王豬籠草(Nepenthesrajah)等個別物種可捕食較大型的動物,如小型哺乳動物或爬行動物,但它們的主要捕食來源仍是小型昆蟲。二齒豬籠草(Nepenthesbicalcarata)在其籠蓋下表面的基部具有兩個齒狀的尖刺,這兩個尖齒可能是用來引誘昆蟲爬到籠口的正上方,而後墜入籠中,之後被消化液淹死。豬籠草捕蟲籠的內表面具有作用類似的光滑蠟質區,可防止獵物從籠中爬出。
瓶子草屬
瓶狀捕蟲器結構最簡單的可能是太陽瓶子草屬(Heliamphora)植物。它們的捕蟲器是由葉片捲曲融合成的一個簡單的瓶狀結構演化而來。太陽瓶子草是南美洲高降雨量地區特有的,例如羅賴馬山(MountRoraima)。此外,太陽瓶子草為了防止捕蟲瓶中的液體過多而使得其倒伏,它在葉片的融合處進化出了一條細小的縫隙,使太陽瓶子草需依靠細菌才能完成消化過程。
瓶子草屬植物為了解決捕蟲瓶中液體過度而導致倒伏的問題,進化出了瓶蓋。瓶蓋是位於瓶口的一片寬大的葉狀結構。它覆蓋了整個瓶口,使得雨水不能進入其中。瓶子草具有分泌蛋白酶和磷酸脂酶的能力,蛋白酶和磷酸脂酶可將蛋白質和核酸分解,釋放出胺基酸和磷以供瓶子草吸收。由此可猜測瓶子草進化出瓶蓋也許是為了防止消化酶的流失。
眼鏡蛇瓶子草(Darlingtoniacalifornica)、鸚鵡瓶子草(Sarraceniapsittacina)和小瓶子草(Sarraceniaminor)具有一種特殊的捕蟲方式:它們瓶蓋的左右兩側粘連,形成一個球狀的頂部,使得整個捕蟲瓶幾乎密封。球狀的瓶蓋與瓶身的銜接處有一個凹陷的縫隙。瓶蓋和瓶身上有許多缺少葉綠素而呈現出白色的斑紋,陽光可以透過這些白斑射入捕蟲瓶內。昆蟲(大部分為螞蟻)可以從狹縫中進入捕蟲瓶。一旦進入後,它們會被這些白斑迷惑,誤以為白斑處為出口而在捕蟲瓶內迷失方向,最後落入消化液中而被消化。眼鏡蛇瓶子草的瓶蓋因具有類似蛇信子的附屬物而得名。一些實生的瓶子草也具有懸垂著的長型瓶蓋附屬物,眼鏡蛇瓶子草可能是幼態持續(neoteny)的一個特例。
黃瓶子草(Sarraceniaflava)引誘昆蟲的蜜液中含有毒芹鹼(coniine),它可以麻痹獵物從而提高捕獲率。
土瓶草屬
澳大利亞西部特有的土瓶草(Cephalotusfollicularis)具有“莫卡辛”鞋狀捕蟲籠。捕蟲籠的籠口很顯眼並會分泌蜜液。在唇的內緣具有唇齒,以防止捕蟲籠內的獵物爬出。昆蟲常常被它們唇上分泌的蜜液和類似花朵般的形狀和顏色所吸引。
食蟲鳳梨
瘦縮布羅基鳳梨(Brocchiniareducta)是具有籠狀或瓶狀捕蟲器的一種食蟲鳳梨。與其他近緣個體一樣,其帶狀蠟紙葉片的基部會緊密的包裹成一個瓮狀結構。大部分的鳳梨科植物的這個瓮狀結構只有收集雨水的作用,可成為青蛙、昆蟲或固氮菌的棲息地。瘦縮布羅基鳳梨的瓮狀結構已特化成為具有蠟質內壁的捕蟲器,在其中生活著大量的消化性細菌。
黏液捕蟲器
黏液捕蟲器的捕蟲能力基於那些黏度極大的液滴。這些黏液捕蟲器分布於葉片上,由可分泌黏稠液滴的腺體和黏液腺柄組成。這些黏液捕蟲器可分為較短且參差不齊的捕蟲堇類黏液捕蟲器和較長且可運動的茅膏菜類黏液捕蟲器。
至少有5個屬的植物獨立進化出了黏液捕蟲器。
捕蟲堇屬
捕蟲堇屬(Pinguicula)植物的黏液腺柄非常短小,且葉片具有油亮的光澤。其葉片對於捕捉小型飛蟲十分得力。其黏液的恢復能力較強。其葉片具有向觸生長性,包括為了防止獵物被雨水沖走葉片邊緣會向內捲曲;以及葉片會在獵物下形成一個消化淺凹。
茅膏菜屬
茅膏菜屬(Drosera)內有超過100種茅膏菜具有可運動的黏液捕蟲器。黏液腺存在於黏液腺柄的末端。若有獵物被粘附於附近,黏液腺柄會立刻向獵物方向彎曲,從而參與了捕獲和消化的過程。錦地羅茅膏菜(Droseraburmanii)的黏液腺柄能在一秒鐘甚至更短的時間內彎曲180゜。茅膏菜屬植物的分布非常的廣泛,除南極大陸外的各大洲都有存在。澳大利亞的茅膏菜屬植物之間存在著較大的差異。迷你茅膏菜(Pygmysundews),如侏儒茅膏菜(Droserapygmaea)和球根茅膏菜(tuberoussundews),如盾葉茅膏菜(Droserapeltata),前者在冬季會產生冬芽,而後者具有過度乾燥夏季必需的球根。這些物種依賴於昆蟲提供氮素,因此它們不具備大多數植物用於將土壤中的氮轉化為有機形式的硝酸還原酶。
露松屬
露松屬(Drosophyllum)與茅膏菜屬之間存在著密切的近緣關係,其葉片可以快速運動和生長。幾乎所有的食蟲植物都生長於沼澤或潮濕的熱帶地區,但露松屬植物很特殊,其生活於類似沙漠的環境中。
腺毛草屬
腺毛草屬(Byblis)雖然與茅膏菜屬之間親緣關係較為疏遠,但它們的生活習性卻很相似。
穗葉藤屬
關於盾籽穗葉藤(Triphyophyllumpeltatum)的分子證據表示其屬於雙鉤葉科(Dioncophyllaceae)且與露松之間存在著密切的近緣關係。盾籽穗葉藤常為藤本,其幼年階段的植株具有食蟲性。這可能是為了準備開花所需的營養。
夾狀捕蟲器
只有捕蠅草(Dionaeamuscipula)和囊泡貉藻(Aldrovandavesiculosa)兩個物種具有夾狀捕蟲器,因此它們被認為具有同一個祖先。貉藻為水生植物,專門捕捉水中的小型無脊椎動物;捕蠅草則為陸生植物,捕捉各種節肢動物,包括蜘蛛。
它們的夾狀捕蟲器很相似,都是由在葉片的末端,沿中脈分為兩葉。在每片夾葉的內表面都有觸敏的觸毛。捕蠅草的每片夾葉具有3根觸毛;貉藻上的觸毛數量更多。觸毛的彎曲會引發觸毛基部細胞的脅迫門控通道打開,從而產生一個動作電位並傳導至中脈。中脈細胞泵出離子使得細胞內滲透壓改變或酸度升高,導致中脈細胞失水塌陷。雖然夾狀捕蟲器開合的機制仍有爭議,但夾葉的開合來自於中脈細胞形態上的改變是可以肯定的。夾狀捕蟲器關閉的整個過程不超過1秒鐘。
夾葉本身具有向觸性。獵物的掙扎對夾葉內表面的刺激造成了夾葉向內生長,使得獵物被密封於夾葉中,形成一個消化囊,從而開始1~2個星期的消化過程。每個夾狀捕蟲器可使用3~4次,最終將失去關閉的能力。
囊狀捕蟲器
囊狀捕蟲器是狸藻屬(Utricularia)植物特有的。囊狀捕蟲器上的離子泵會將囊內的離子泵出。由於囊內滲透壓降低,內部的水因滲透作用被排出,使得囊內產生局部的真空。囊狀捕蟲器有一個小口,由一個可開合的囊蓋密閉住。水生狸藻的囊蓋具有一對長觸鬚。當水生的無脊椎動物,如水蚤(Daphnia)觸碰到這些觸鬚時,其槓桿作用使得囊蓋變形,從而釋放真空。獵物就會被吸入囊內,最終被消化。陸生狸藻生長於陸地上的積水區域,它們的捕蟲機制與水生狸藻有略微不同。
龍蝦籠狀捕蟲器
龍蝦籠狀捕蟲器存在於螺鏇狸藻屬(Genlisea)植物中。螺鏇狸藻專門捕食水生原生動物。其“丫”形的葉片允許獵物進入而阻止其退出。獵物進入螺鏇的入口後,“丫”形葉片的上部兩個觸手就會逼迫獵物向“丫”形葉下部的消化囊方向運動。獵物的被迫運動也被認為與捕蟲器內外滲透壓導致的局部真空有關,這類似於狸藻屬植物的囊狀捕蟲器,所以在進化上它們之間可能存在著近緣關係。
進化過程
關於食蟲植物的進化僅有少量的化石記錄,所以其過程並不清晰。已發現的食蟲植物化石數量很少,且多為種子和花粉。食蟲植物為草本植物,不具有易成化石的結構,如樹皮或木質等。特別是其捕蟲器的結構更為的稚嫩,由於各種原因其可能會在化石中缺失。儘管如此,仍可利用現代捕蟲器的結構推斷出古代捕蟲器大部分的結構。重構的已知最早的食蟲植物長頸古瓶子草籠狀或瓶狀葉片捕蟲器毫無疑問源自於捲曲融合的葉片。瓶子草的維管組織是一個很好的例證。捕蟲瓶前方劍葉部混合了來自左側瓶身和右側瓶身的維管束,這符合關於原始葉片兩側邊緣朝葉片向軸面融合的猜想。黏液捕蟲器也是從一種粘性的非食蟲性葉片逐漸進化來的,與此同時,其也由被動捕蟲器向主動捕蟲器演化。分子數據顯示“捕蠅草屬(Dionaea)—貉藻屬(Aldrovanda)”分支與茅膏菜屬(Drosera)有著密切的近緣關係。但其捕蟲器與茅膏菜之間具有天壤之別,它失去了黏液而轉變成快速運動的捕蟲夾,這其中的原因不得而知。
已知的食蟲植物只有約630種。至少有6個分支獨立的植物進化出了食蟲性。但這個“獨立”也是相對的,它們可能都源自同一個具有食蟲傾向的祖先。杜鵑花目(Ericales)和石竹目(Caryophyllales)具有特別多的食蟲植物。而杜鵑花目下的食蟲植物的生態類似要比其形態類型更豐富,其目下大部分食蟲植物都生長於貧瘠的地區,如沼澤和荒原。
有學者認為所有的捕蟲器都由一種基本結構——帶毛的葉片演化而來的。帶毛的葉片可吸附雨水使其滯留在上面,特別是當葉片呈盾狀時更為有效。這樣濕潤的環境促進了細菌在葉片上繁殖。當昆蟲落在葉片上時,由於水表面張力的作用,昆蟲困於水中窒息而死。緊接著,葉片上的細菌分解昆蟲的屍體,釋放出可以被葉片直接吸收的營養物質。其吸收原理類似於非食蟲植物的葉面施肥。這使得這些植物在保存水或獲取營養方面更具競爭優勢。瓶狀或籠狀的葉片可以更好地收集雨水,導致了籠狀或瓶狀捕蟲器的出現。可產生黏液的黏性葉片可以容易的黏獲昆蟲,導致了黏液捕蟲器的出現。
籠狀或瓶狀捕蟲器通過優勝劣汰,留下了更深的籠狀或瓶狀葉片。跟著葉片的兩側融合在一起,隨後只在底部留下了少量幫助其捕獲獵物的毛被,其餘的大部分毛被都消失了。
螺鏇狸藻的龍蝦籠狀捕蟲器的來源較難以解釋。它們可能源自專門捕食地面獵物的分叉囊狀捕蟲器,或是源自囊狀捕蟲器上起到引導獵物作用的突出物。不管其起源於什麼,龍蝦籠狀捕蟲器絕對是一種優良的進化產物。當龍蝦籠狀捕蟲器被埋於苔蘚中時,其可以捕食來自各個方向的獵物,從而增大了捕獲率。
狸藻的囊狀捕蟲器可能起源於類似鸚鵡瓶子草(Sarraceniapsittacina)的捕蟲器。這種捕蟲器被水淹沒後專門捕食水生獵物。為了防止獵物從捕蟲器中爬出或飛出,其利用蠟質、重力和細長的管道困住獵物。然而當捕蟲器被水淹沒後,獵物就能輕易地游出,所以狸藻的囊蓋已從原始的囊門演化為單向開啟的囊蓋。之後,狸藻則演化成為利用捕蟲囊內部形成的真空,並通過囊蓋上的長觸毛觸發的主動捕蟲器。
茅膏菜科的捕蟲器包括黏液捕蟲器和捕蠅草與貉藻具有的夾狀捕蟲器。許多非食蟲植物也具有黏液捕蟲器。腺毛草屬植物和露松屬植物進化出了被動黏液捕蟲器。
主動黏液捕蟲器依靠快速的移動來制服獵物。茅膏菜屬植物的黏液捕蟲器的運動來源於組織的實際分裂生長,所以它們的運動速度較緩慢。而捕蠅草這樣的快速運動的夾狀捕蟲器來源於細胞大小的改變。因其運動之迅速使得黏液對它們來說已並非必要。帶柄的黏液腺曾經存在於捕蠅草上,現在它們進化成為了捕蠅草的齒和觸毛。這是一個自然選擇造成原有結構具有新功能的典型例子。
關於石竹目(Caryophyllales)植物的分類學分析表明。茅膏菜科(Droseraceae)、穗葉藤屬(Triphyophyllum)、豬籠草科(Nepenthaceae)和露松屬(Drosophyllum)植物與檉柳屬(Tamarix)、鉤枝藤科(Ancistrocladaceae)、蓼科(Polygonaceae)和藍雪科(Plumbaginaceae)植物之間具有密切的近緣關係。檉柳的葉片上具有專門分泌鹽分的腺體;藍雪科的植物中的一部分,如補血草屬(Limonium)植物具有可分泌蛋白酶和黏液等物質的腺體。另一部分,如藍雪屬(Ceratostigma)植物的花萼上具有帶柄的黏液腺,這些腺體可以幫助傳播種子,也可能具有保護花朵免受蠕蟲啃食的功能。這些腺體可能與食蟲植物的腺體是同源的。也許食蟲植物的食蟲性源自於自我保護而不是為了吸取營養。鳳仙花屬植物與瓶子草科(Sarraceniaceae)和捕蠅幌屬(Roridula)之間存在著密切的親緣關係,它們都具有帶柄的腺體。
只有瘦縮布羅基鳳梨(Brocchiniareducta)和貝爾特羅嘉寶鳳梨(Catopsisberteroniana)這樣的食蟲鳳梨可能非源自於葉片或萼片帶毛的植物。這兩種鳳梨通過產生蠟質將中部儲水的基本結構進化出了食蟲性。
藥用價值
一位以色列特拉維夫大學(TelAvivUniversity)的研究員在2009年發表的一項研究成果表明,食蟲植物的分泌物中含有抗真菌的化合物。對這類化合物於已具有廣泛抗藥性的真菌感染依然有效。這將是抗真菌藥物研發的一個新方向。
文學描述
食蟲植物一直都是人們感興趣的主題。但其中大部分的描述都極不準確。各種虛構的食蟲植物出現於各類書籍、電影、電視劇和遊戲中。通常這些虛構的描述包括脫離實際的巨大捕蟲器等,並被作為噱頭置於顯眼處。在流行文化中最為有名的虛構食蟲植物,包括20世紀60年代的黑色喜劇《恐怖小店(TheLittleShopofHorrors)》,約翰·溫德姆(JohnWyndham)在《三腳妖之日(TheDayoftheTriffids)》中飾演的“三腳妖”。另一方面,電影《生物奇觀(TheHellstromChronicle)》(1971年)中,對食蟲植物進行了準確的描述。流行文化中已知最早的關於食蟲植物的描述,來自於1878年一篇的報導。在報導中卡爾·里馳博士(Dr.CarlLiche)聲稱在馬達加斯加親眼目睹了一位年輕女人被一棵食人樹吞噬。1881年,這篇報導被發表在了《南澳大利亞記錄(SouthAustralianRegister)》上。在隨附的圖片中,這個女人被描述為來自於一個名為“Mkodos”的未開化的殘忍部落。最後,這篇報導被事實揭穿,被認定為是一篇虛假的報導,其中的卡爾·里馳博士、“Mkodos”部落和食人樹都是捏造的。
在中國廣為流傳的“奠柏”的傳說也可能源自於或改編於這個虛假的報導。