雞兔同籠[一種數學奧數題目]

雞兔同籠[一種數學奧數題目]
雞兔同籠[一種數學奧數題目]
更多義項 ▼ 收起列表 ▲

雞兔同籠,是中國古代著名典型趣題之一,記載於《孫子算經》之中。雞兔同籠問題,是國小奧數的常見題型。在它的解法中,通常是假設法比較簡單易懂一點。

基本信息

歷史

雞兔同籠是中國古代的數學名題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:

•今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?

這四句話的意思是:

•有若干只雞兔同在一個籠子裡,從上面數,有35個頭,從下面數,有94隻腳。問籠中各有多少只雞和兔?

算這個有個最簡單的算法。

(總腳數-總頭數×雞的腳數)÷(兔的腳數-雞的腳數)=兔的只數

(94-35×2)÷2=12(兔子數) 總頭數(35)-兔子數(12)=雞數(23)

解釋:讓兔子和雞同時抬起兩隻腳,這樣籠子裡的腳就減少了總頭數×2隻,由於雞隻有2隻腳,所以籠子裡只剩下兔子的兩隻腳,再÷2就是兔子數。

方法

假設法

•假設全是雞:2×35=70(只)

•雞腳比總腳數少:94-70=24 (只)

•兔子比雞多的腳數:4-2=2(只)

•兔子的只數:24÷2=12 (只)

•雞的只數:35-12=23(只)

•假設全是兔子:4×35=140(只)

•兔子腳比總數多:140-94=46(只)

•兔子比雞多的腳數:4-2=2(只)

•雞的只數:46÷2=23(只)

•兔子的只數:=35-23=12(只)

方程法

一元一次方程

解:設兔有x只,則雞有(35-x)只。

雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]
雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]

解得

雞:35-12=23(只)

解:設雞有x只,則兔有(35-x)只。

雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]
雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]

解得

兔:35-23=12(只)

答:兔子有12隻,雞有23隻。

註:通常設方程時,選擇腿的只數多的動物,會在套用到其他類似雞兔同籠的問題上,好算一些。

二元一次方程組

•解:設雞有x只,兔有y只。

雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]

解得

雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]

答:兔子有12隻,雞有23隻。

抬腿法

方法一

假如讓雞抬起一隻腳,兔子抬起2隻腳,還有94÷2=47(只)腳。籠子裡的兔就比雞的腳數多1,這時,腳與頭的總數之差47-35=12,就是兔子的只數。

方法二

假如雞與兔子都抬起兩隻腳,還剩下94-35×2=24隻腳 , 這時雞是屁股坐在地上,地上只有兔子的腳,而且每隻兔子有兩隻腳在地上,所以有24÷2=12隻兔子,就有35-12=23隻雞。

方法三

我們可以先讓兔子都抬起2隻腳,那么就有35×2=70隻腳,腳數和原來差94-70=24隻腳,這些都是每隻兔子抬起2隻腳,一共抬起24隻腳,用24÷2得到兔子有12隻,用35-12得到雞有23隻。

列表法

腿數 雞(只數) 兔(只數)
88 26 9
90 25 10
92 24 11
94 23 12

公式

公式1:(兔的腳數×總只數-總腳數)÷(兔的腳數-雞的腳數)=雞的只數

總只數-雞的只數=兔的只數

公式2:( 總腳數-雞的腳數×總只數)÷(兔的腳數-雞的腳數)=兔的只數

總只數-兔的只數=雞的只數

公式3:總腳數÷2—總頭數=兔的只數

總只數—兔的只數=雞的只數

公式4:雞的只數=(4×雞兔總只數-雞兔總腳數)÷2 兔的只數=雞兔總只數-雞的只數

公式5:兔總只數=(雞兔總腳數-2×雞兔總只數)÷2 雞的只數=雞兔總只數-兔總只數

公式6 :4×+2(總數-x)=總腳數 (x=兔,總數-x=雞數,用於方程)

解題思路

理解

雞兔同籠[一種數學奧數題目] 雞兔同籠[一種數學奧數題目]

中國古代《孫子算經》共三卷,成書大約在公元5世紀。這本書淺顯易懂,有許多有趣的算術題,比如“雞兔同籠”問題:

今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?

題目中給出雉兔共有35隻,如果把兔子的兩隻前腳用繩子捆起來,看作是一隻腳,兩隻後腳也用繩子捆起來,看作是一隻腳,那么,兔子就成了2隻腳,即把兔子都先當作兩隻腳的 雞。雞兔總的腳數是35×2=70(只),比題中所說的94隻要少94-70=24(只)。

鬆開一隻兔子腳上的繩子,總的腳數就會增加2隻,即70+2=72(只),再鬆開一隻兔子腳上的繩子,總的腳數又增加2,2,2,2……,一直繼續下去,直至增加24,因此兔子數:24÷2=12(只),從而雞有35-12=23(只)。

我們來總結一下這道題的解題思路:如果先假設它們全是雞,於是根據雞兔的總數就可以算出在假設下共有幾隻腳,把這樣得到的腳數與題中給出的腳數相比較,看看差多少,每差2隻腳就說明有1隻兔,將所差的腳數除以2,就可以算出共有多少只兔。概括起來,解雞兔同籠題的基本關係式是:兔數=(實際腳數-每隻雞腳數×雞兔總數)÷(每隻兔子腳數-每隻雞腳數)。類似地,也可以假設全是兔子。

思路

"雞兔同籠"是一類有名的中國古算題。最早出現在《孫子算經》中。許多國小算術套用題都可以轉化成這類問題,或者用解它的典型解法--"假設法"來求解。因此很有必要學會它的解法和思路。

例1: 有若干只雞和兔子,它們共有88個頭,244隻腳,雞和兔各有多少只

解:我們構想,每隻雞都是"金雞獨立",一隻腳站著;而每隻兔子都用兩條後腿,像人一樣用兩隻腳站著,地面上出現腳的總數的一半,·也就是

244÷2=122(只)

在122這個數里,雞的頭數算了一次,兔子的頭數相當於算了兩次。因此從122減去總頭數88,剩下的就是兔子頭數

122-88=34(只),

有34隻兔子,當然雞就有54隻。

答:有兔子34隻,雞54隻。

上面的計算,可以歸結為下面算式:

總腳數÷2-總頭數=兔子數. 總頭數-兔子數=雞數

上面的解法是《孫子算經》中記載的。做一次除法和一次減法,馬上能求出兔子數,多簡單!能夠這樣算,主要利用了兔和雞的腳數分別是4和2,4又是2的2倍.可是,當其他問題轉化成這類問題時,"腳數"就不一定是4和2,上面的計算方法就行不通。因此,我們對這類問題給出一種一般解法.

還說例1.

如果構想88隻都是兔子,那么就有4×88隻腳,比244隻腳多了

88×4-244=108(只).

每隻雞比兔子少(4-2)只腳,所以共有雞

(88×4-244)÷(4-2)= 54(只).

說明我們構想的88隻"兔子"中,有54隻不是兔子。而是雞.因此可以列出公式

雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數).

當然,我們也可以構想88隻都是"雞",那么共有腳2×88=176(只),比244隻腳少了

244-176=68(只).

每隻雞比每隻兔子少(4-2)只腳,

68÷2=34(只).

說明構想中的"雞",有34隻是兔子,也可以列出公式

兔數=(總腳數-雞腳數×總頭數)÷(兔腳數-雞腳數).

上面兩個公式不必都用,用其中一個算出兔數或雞數,再用總頭數去減,就知道另一個數。

假設全是雞,或者全是兔,通常用這樣的思路求解,有人稱為"假設法".

拿一個具體問題來試試上面的公式。

例2 紅鉛筆每支0.19元,藍鉛筆每支0.11元,兩種鉛筆共買了16支,花了2.80元。問紅,藍鉛筆各買幾支?

解:以"分"作為錢的單位.我們構想,一種"雞"有11隻腳,一種"兔子"有19隻腳,它們共有16個頭,280隻腳。

現在已經把買鉛筆問題,轉化成"雞兔同籠"問題了.利用上面算兔數公式,就有

藍筆數=(19×16-280)÷(19-11)

=24÷8

=3(支).

紅筆數=16-3=13(支).

答:買了13支紅鉛筆和3支藍鉛筆。

對於這類問題的計算,常常可以利用已知腳數的特殊性.例2中的"腳數"19與11之和是30.我們也可以構想16隻中,8隻是"兔子",8隻是"雞",根據這一構想,腳數是

8×(11+19)=240(支)。

比280少40.

40÷(19-11)=5(支)。

就知道構想中的8隻"雞"應少5隻,也就是"雞"(藍鉛筆)數是3.

30×8比19×16或11×16要容易計算些。利用已知數的特殊性,靠心算來完成計算.

實際上,可以任意構想一個方便的兔數或雞數。例如,構想16隻中,"兔數"為10,"雞數"為6,就有腳數

19×10+11×6=256.

比280少24.

24÷(19-11)=3,

就知道構想6隻"雞",要少3隻。

要使構想的數,能給計算帶來方便,常常取決於你的心算本領.

例題

例3 一份稿件,甲單獨打字需6小時完成.乙單獨打字需10小時完成,甲單獨打若干小時後,因有事由乙接著打完,共用了7小時。甲打字用了多少小時?

解:我們把這份稿件平均分成30份(30是6和10的最低公倍數),甲每小時打30÷6=5(份),乙每小時打30÷10=3(份).

現在把甲打字的時間看成"兔"頭數,乙打字的時間看成"雞"頭數,總頭數是7."兔"的腳數是5,"雞"的腳數是3,總腳數是30,就把問題轉化成"雞兔同籠"問題了。

根據前面的公式

"兔"數=(30-3×7)÷(5-3)

=4.5,

"雞"數=7-4.5

=2.5

也就是甲打字用了4.5小時,乙打字用了2.5小時。

答:甲打字用了4小時30分.

例4 1998年時,父母年齡(整數)和是78歲,兄弟的年齡和是17歲。四年後(2002年)父的年齡是弟的年齡的4倍,母的年齡是兄的年齡的3倍.那么當父的年齡是兄的年齡的3倍時,是公元哪一年?

解:4年後,兩人年齡和都要加8.此時兄弟年齡之和是17+8=25,父母年齡之和是78+8=86。我們可以把兄的年齡看作"雞"頭數,弟的年齡看作"兔"頭數。25是"總頭數",86是"總腳數"。根據公式,兄的年齡是

(25×4-86)÷(4-3)=14(歲).

1998年,兄年齡是

14-4=10(歲).

父年齡是

(25-14)×4+4=40(歲).

因此,當父的年齡是兄的年齡的3倍時,兄的年齡是

(40-10)÷(3-1)=15(歲).

這是2003年。

答:公元2003年時,父年齡是兄年齡的3倍.

例5蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀。這三種小蟲共18隻,有118條腿和20對翅膀.每種小蟲各幾隻?

解:因為蜻蜓和蟬都有6條腿,所以從腿的數目來考慮,可以把小蟲分成"8條腿"與"6條腿"兩種。利用公式就可以算出8條腿的

蜘蛛數=(118-6×18)÷(8-6)

=5(只).

因此就知道6條腿的小蟲共

18-5=13(只).

也就是蜻蜓和蟬共有13隻,它們共有20對翅膀。再利用一次公式

蟬數=(13×2-20)÷(2-1)=6(只).

因此蜻蜓數是13-6=7(只).

答:有5隻蜘蛛,7隻蜻蜓,6隻蟬。

例6 某次數學考試考五道題,全班52人參加,共做對181道題,已知每人至少做對1道題,做對1道的有7人,5道全對的有6人,做對2道和3道的人數一樣多,那么做對4道的人數有多少人?

解:對2道,3道,4道題的人共有

52-7-6=39(人).

他們共做對

181-1×7-5×6=144(道).

由於對2道和3道題的人數一樣多,我們就可以把他們看作是對2.5道題的人((2+3)÷2=2.5).這樣

兔腳數=4,雞腳數=2.5,

總腳數=144,總頭數=39.

對4道題的有

(144-2.5×39)÷(4-2.5)=31(人).

答:做對4道題的有31人。

以例1為例 有若干只雞和兔子,它們共有88個頭,244隻腳,雞和兔各有多少只?

以簡單的X方程計算的話,我們一般用設大數為X,那么也就是設兔為X,那么雞的只數就是總數減去雞的只數,即(88-X)只。

解:設兔為X只。則雞為(88-X)只。

4X+2×(88-X)=244

上列的方程解釋為:兔子的腳數加上雞的腳數,就是共有的腳數。4X就是兔子的腳數,2×(88-X)就是雞的腳數。

4X+2×88-2X=244

2X+176=244

2X+176-176=244-176

2X=68

2X÷2=68÷2

X=34

即兔子為34隻,總數是88隻,則雞:88-34=54隻。

答:兔子有34隻,雞有54隻。

相關詞條

熱門詞條

聯絡我們