定義
![閉線性運算元](/img/b/659/nBnauM3XxYDN4gjM3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLyEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/5/cad/nBnauM3X2gDOxcDMzMjMzATN1UTM1QDN5MjM5ADMwAjMwUzLzIzL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![閉線性運算元](/img/9/1ba/nBnauM3XyIzN2MTOzkjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzL1QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![閉線性運算元](/img/b/a58/nBnauM3X4EDMxUDM4UjMzATN1UTM1QDN5MjM5ADMwAjMwUzL1IzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/7/97f/nBnauM3X0QzMyEjN1UzMzATN1UTM1QDN5MjM5ADMwAjMwUzL1MzLwQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
定義1(閉線性運算元)設X,Y均為Banach空間,T是 的線性運算元。對於任意的 ,若由 可得 ,且 ,則稱T為閉線性運算元,簡稱閉運算元。
![閉線性運算元](/img/1/c27/nBnauM3XxcjN5gTOzEjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/1/c27/nBnauM3XxcjN5gTOzEjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
註:每個連續線性運算元T都可以將定義域 延拓到 的閉包上,因此每個連續線性運算元T都可以看成是有閉定義域的,於是每個連續線性運算元必是閉運算元;但一般的閉線性運算元不一定是連續運算元(下面的例1證實了這一說法)。
![閉線性運算元](/img/b/3d2/nBnauM3XyQjN5cDO3AzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/8/6ae/nBnauM3X0IjMyUDM3kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzL4QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/8/cf5/nBnauM3X3EDM5IDO0UzM3UzM1UTM1QDN5MjM5ADMwAjMwUzL1MzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/d/6a6/nBnauM3X3YTO2kzM0QjMzATN1UTM1QDN5MjM5ADMwAjMwUzL0IzL0gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
例1考察微分運算元 ,它是定義在 上,取值於 的線性運算元。取函式 ,則
![閉線性運算元](/img/0/6c1/nBnauM3X1EDNyMzN1EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![閉線性運算元](/img/4/d2f/nBnauM3X3UzM0gjN3YzMzATN1UTM1QDN5MjM5ADMwAjMwUzL2MzL3QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![閉線性運算元](/img/8/f25/nBnauM3X0QDM5QjM1AzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLxczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
因此T是無界運算元,從而不是連續運算元。下證T是閉運算元。設 則對 另一方面,
![閉線性運算元](/img/3/a59/nBnauM3X2cDN0AzM5cjMzATN1UTM1QDN5MjM5ADMwAjMwUzL3IzL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
所以,
![閉線性運算元](/img/3/df5/nBnauM3X4QDN0ETM0EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLyYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/6/b91/nBnauM3XxIDNzgTN3EzMzATN1UTM1QDN5MjM5ADMwAjMwUzLxMzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
故
![閉線性運算元](/img/5/a6c/nBnauM3X4UjM3QTN4EzMzATN1UTM1QDN5MjM5ADMwAjMwUzLxMzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
定義2(線性運算元的圖像)令T是定義在 上到Y的線性運算元,稱
![閉線性運算元](/img/9/daa/nBnauM3X3YTM3IzM2kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzL2AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
為T的圖像。
![閉線性運算元](/img/4/3e4/nBnauM3X0UTMzgDN3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![閉線性運算元](/img/5/8ac/nBnauM3X3ATMzMDM2kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
註: 是 的線性子空間。
性質
![閉線性運算元](/img/9/daa/nBnauM3X3YTM3IzM2kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzL2AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/5/8ac/nBnauM3X3ATMzMDM2kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
上面定義的閉線性運算元有一個重要性質,即T的圖象 為乘積空間 的一個閉線性子空間。定理描述為:
![閉線性運算元](/img/4/3e4/nBnauM3X0UTMzgDN3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
定理1 T是閉運算元的充分必要條件是 為閉集。
![閉線性運算元](/img/5/cad/nBnauM3X2gDOxcDMzMjMzATN1UTM1QDN5MjM5ADMwAjMwUzLzIzL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![閉線性運算元](/img/3/74d/nBnauM3X0cTN0YTM3kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/b/a58/nBnauM3X4EDMxUDM4UjMzATN1UTM1QDN5MjM5ADMwAjMwUzL1IzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/7/97f/nBnauM3X0QzMyEjN1UzMzATN1UTM1QDN5MjM5ADMwAjMwUzL1MzLwQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![閉線性運算元](/img/3/f43/nBnauM3XxETO5UDMxMjMzATN1UTM1QDN5MjM5ADMwAjMwUzLzIzLxIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/4/3e4/nBnauM3X0UTMzgDN3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
證明:(1)必要性 設 , . 因為T是閉運算元,則 , ,於是 ,故 是閉集。
![閉線性運算元](/img/4/3e4/nBnauM3X0UTMzgDN3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![閉線性運算元](/img/9/1ba/nBnauM3XyIzN2MTOzkjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzL1QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(2)充分性 設 是閉的,若 ,那么
![閉線性運算元](/img/0/bfb/nBnauM3X2ETM5QDOzEjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLzAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/4/f86/nBnauM3XwUzM0AzNxQjMzATN1UTM1QDN5MjM5ADMwAjMwUzL0IzLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
這表明
套用-閉圖像定理
![閉線性運算元](/img/b/659/nBnauM3XxYDN4gjM3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLyEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![閉線性運算元](/img/1/c27/nBnauM3XxcjN5gTOzEjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![閉線性運算元](/img/4/3e4/nBnauM3X0UTMzgDN3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![閉線性運算元](/img/5/8ac/nBnauM3X3ATMzMDM2kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
定理2(閉圖像定理)設X,Y均為Banach空間,T是 的線性運算元。 是X中的閉集。若 是 中閉集,則T是連續的。
證:該定理的證明參見參考文獻[1] 的291-292頁。
由定理1可知,定理2還可敘述成:在定理2的條件下,若T是閉運算元,則T是連續的。因此定義域是閉子空間的閉運算元是連續運算元。
拓展
閉線性運算元原是泛函分析中的概念,後被引入魯棒控制中討論系統的不穩定攝動問題。經研究發現,控制系統中一個對象的傳遞函式P(s)(n×m階實有理矩陣),若僅在有限功率譜輸入與輸出情況下考慮,實際上等於引入了一個從輸入空間H到輸出空間H的閉線性運算元,這一結論為在魯棒控制中引入隔撲(Gap)概念討論系統的不穩定攝動打下了基礎。