發展歷史
鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金因具有強度高、耐蝕性好、耐熱性高等特點而被廣泛用於各個領域。世界上許多國家都認識到鈦合金材料的重要性,相繼對其進行研究開發,並得到了實際套用。
第一個實用的鈦合金是1954年美國研製成功的Ti-6Al-4V合金,由於它的耐熱性、強度、塑性、韌性、成形性、可焊性、耐蝕性和生物相容性均較好,而成為鈦合金工業中的王牌合金,該合金使用量已占全部鈦合金的75%~85%。其他許多鈦合金都可以看作是Ti-6Al-4V合金的改型。
20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金,70年代開發出一批耐蝕鈦合金,80年代以來,耐蝕鈦合金和高強鈦合金得到進一步發展。耐熱鈦合金的使用溫度已從50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出現,使鈦在發動機的使用部位正由發動機的冷端(風扇和壓氣機)向發動機的熱端(渦輪)方向推進。結構鈦合金向高強、高塑、高強高韌、高模量和高損傷容限方向發展。
另外,20世紀70年代以來,還出現了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形狀記憶合金,並在工程上獲得日益廣泛的套用。
世界上已研製出的鈦合金有數百種,最著名的合金有20~30種,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。
據相關統計數據,2012年我國化工行業用鈦量達2.5萬噸,比2011年有所減少。這是自2009年以來,我國化工用鈦市場首次出現負增長。近些年來,化工行業一直是鈦加工材最大的用戶,其用量在鈦材總用量的占比一直保持在50%以上,2011年占比高達55%。但隨著經濟陷入低迷期,化工行業不但新建項目明顯減少,同時還將面臨產業結構調整,部分產品新建產能受到控制,落後產能也將逐步淘汰的境地。受此影響,其對鈦加工材用量的萎縮也變得順理成章。在此之前,便有業內人士預測化工行業用鈦量在2013~2015年間達到峰值。以當前市場表現看來,2012年整體經濟的疲軟有可能使得化工用鈦的衰退期提前。
原理
鈦合金是以鈦為基礎加入其他元素組成的合金。鈦有兩種同質異晶體:882℃以下為密排六方結構α鈦,882℃以上為體心立方的β鈦。
合金元素根據它們對相變溫度的影響可分為三類:
①穩定α相、提高相轉變溫度的元素為α穩定元素,有鋁、碳、氧和氮等。其中鋁是鈦合金主要合金元素,它對提高合金的常溫和高溫強度、降低比重、增加彈性模量有明顯效果。
②穩定β相、降低相變溫度的元素為β穩定元素,又可分同晶型和共析型二種。前者有鉬、鈮、釩等;後者有鉻、錳、銅、鐵、矽等。
③對相變溫度影響不大的元素為中性元素,有鋯、錫等。
氧、氮、碳和氫是鈦合金的主要雜質。氧和氮在α相中有較大的溶解度,對鈦合金有顯著強化效果,但卻使塑性下降。通常規定鈦中氧和氮的含量分別在0.15~0.2%和0.04~0.05%以下。氫在α相中溶解度很小,鈦合金中溶解過多的氫會產生氫化物,使合金變脆。通常鈦合金中氫含量控制在 0.015%以下。氫在鈦中的溶解是可逆的,可以用真空退火除去。
性能
鈦是一種新型金屬,鈦的性能與所含碳、氮、氫、氧等雜質含量有關,最純的碘化鈦雜質含量不超過0.1%,但其強度低、塑性高。99.5%工業純鈦的性能為:密度ρ=4.5g/立方厘米,熔點為1725℃,導熱係數λ=15.24W/(m.K),抗拉強度σb=539MPa,伸長率δ=25%,斷面收縮率ψ=25%,彈性模量E=1.078×105MPa,硬度HB195。
強度高
鈦合金的密度一般在4.51g/立方厘米左右,僅為鋼的60%,純鈦的密度才接近普通鋼的密度,一些高強度鈦合金超過了許多合金結構鋼的強度。因此鈦合金的比強度(強度/密度)遠大於其他金屬結構材料,見表7-1,可制出單位強度高、剛性好、質輕的零部件。飛機的發動機構件、骨架、蒙皮、緊固件及起落架等都使用鈦合金。
熱強度高
使用溫度比鋁合金高几百度,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作這兩類鈦合金在150℃~500℃範圍內仍有很高的比強度,而鋁合金在150℃時比強度明顯下降。鈦合金的工作溫度可達500℃,鋁合金則在200℃以下。
抗蝕性好
鈦合金在潮濕的大氣和海水介質中工作,其抗蝕性遠優於不鏽鋼;對點蝕、酸蝕、應力腐蝕的抵抗力特彆強;對鹼、氯化物、氯的有機物品、硝酸、硫酸等有優良的抗腐蝕能力。但鈦對具有還原性氧及鉻鹽介質的抗蝕性差。
低溫性能好
鈦合金在低溫和超低溫下,仍能保持其力學性能。低溫性能好,間隙元素極低的鈦合金,如TA7,在-253℃下還能保持一定的塑性。因此,鈦合金也是一種重要的低溫結構材料。
化學活性大
鈦的化學活性大,與大氣中O、N、H、CO、CO2、水蒸氣、氨氣等產生強烈的化學反應。含碳量大於0.2%時,會在鈦合金中形成硬質TiC;溫度較高時,與N作用也會形成TiN硬質表層;在600℃以上時,鈦吸收氧形成硬度很高的硬化層;氫含量上升,也會形成脆化層。吸收氣體而產生的硬脆表層深度可達0.1~0.15 mm,硬化程度為20%~30%。鈦的化學親和性也大,易與摩擦表面產生粘附現象。
導熱彈性小
鈦的導熱係數λ=15.24W/(m.K)約為鎳的1/4,鐵的1/5,鋁的1/14,而各種鈦合金的導熱係數比鈦的導熱係數約下降50%。鈦合金的彈性模量約為鋼的1/2,故其剛性差、易變形,不宜製作細長桿和薄壁件,切削時加工表面的回彈量很大,約為不鏽鋼的2~3倍,造成刀具後刀面的劇烈摩擦、粘附、粘結磨損。
分類
鈦是同素異構體,熔點為1668℃,在低於882℃時呈密排六方晶格結構,稱為α鈦;在882℃以上呈體心立方晶格結構,稱為β鈦。利用鈦的上述兩種結構的不同特點,添加適當的合金元素,使其相變溫度及相分含量逐漸改變而得到不同組織的鈦合金(titanium alloys)。室溫下,鈦合金有三種基體組織,鈦合金也就分為以下三類:α合金,(α+β)合金和β合金。中國分別以TA、TC、TB表示。
α鈦合金
它是α相固溶體組成的單相合金,不論是在一般溫度下還是在較高的實際套用溫度下,均是α相,組織穩定,耐磨性高於純鈦,抗氧化能力強。在500℃~600℃的溫度下,仍保持其強度和抗蠕變性能,但不能進行熱處理強化,室溫強度不高。
β鈦合金
它是β相固溶體組成的單相合金, 未熱處理即具有較高的強度,淬火、時效後合金得到進一步強化,室溫強度可達1372~1666 MPa;但熱穩定性較差,不宜在高溫下使用。
α+β鈦合金
它是雙相合金,具有良好的綜合性能,組織穩定性好,有良好的韌性、塑性和高溫變形性能,能較好地進行熱壓力加工,能進行淬火、時效使合金強化。熱處理後的強度約比退火狀態提高50%~100%;高溫強度高,可在400℃~500℃的溫度下長期工作,其熱穩定性次於α鈦合金。
三種鈦合金中最常用的是α鈦合金和α+β鈦合金;α鈦合金的切削加工性最好,α+β鈦合金次之,β鈦合金最差。α鈦合金代號為TA,β鈦合金代號為TB,α+β鈦合金代號為TC。
鈦合金按用途可分為耐熱合金、高強合金、耐蝕合金(鈦-鉬,鈦-鈀合金等)、低溫合金以及特殊功能合金(鈦-鐵貯氫材料和鈦-鎳記憶合金)等。典型合金的成分和性能見表。
熱處理 鈦合金通過調整熱處理工藝可以獲得不同的相組成和組織。一般認為細小等軸組織具有較好的塑性、熱穩定性和疲勞強度;針狀組織具有較高的持久強度、蠕變強度和斷裂韌性;等軸和針狀混合組織具有較好的綜合性能。
用途
鈦合金具有強度高而密度又小,機械性能好,韌性和抗蝕性能很好。另外,鈦合金的工藝性能差,切削加工困難,在熱加工中,非常容易吸收氫氧氮碳等雜質。還有抗磨性差,生產工藝複雜。鈦的工業化生產是1948年開始的。航空工業發展的需要,使鈦工業以平均每年約 8%的增長速度發展。世界鈦合金加工材年產量已達4萬餘噸,鈦合金牌號近30種。使用最廣泛的鈦合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工業純鈦(TA1、TA2和TA3)。
鈦合金主要用於製作飛機發動機壓氣機部件,其次為火箭、飛彈和高速飛機的結構件。60年代中期,鈦及其合金已在一般工業中套用,用於製作電解工業的電極,發電站的冷凝器,石油精煉和海水淡化的加熱器以及環境污染控制裝置等。鈦及其合金已成為一種耐蝕結構材料。此外還用於生產貯氫材料和形狀記憶合金等。
中國於1956年開始鈦和鈦合金研究;60年代中期開始鈦材的工業化生產並研製成TB2合金。
鈦合金是航空航天工業中使用的一種新的重要結構材料,比重、強度和使用溫度介於鋁和鋼之間,但比鋁、鋼強度高並具有優異的抗海水腐蝕性能和超低溫性能。1950年美國首次在F-84戰鬥轟炸機上用作後機身隔熱板、導風罩、機尾罩等非承力構件。60年代開始鈦合金的使用部位從後機身移向中機身、部分地代替結構鋼製造隔框、梁、襟翼滑軌等重要承力構件。鈦合金在軍用飛機中的用量迅速增加,達到飛機結構重量的20%~25%。70年代起,民用機開始大量使用鈦合金,如波音747客機用鈦量達3640公斤以上。馬赫數大於 2.5的飛機用鈦主要是為了代替鋼,以減輕結構重量。又如,美國SR-71 高空高速偵察機(飛行馬赫數為3,飛行高度26212米),鈦占飛機結構重量的93%,號稱“全鈦”飛機。當航空發動機的推重比從4~6提高到8~10,壓氣機出口溫度相應地從200~300°C增加到500~600°C時,原來用鋁製造的低壓壓氣機盤和葉片就必須改用鈦合金,或用鈦合金代替不鏽鋼製造高壓壓氣機盤和葉片,以減輕結構重量。70年代,鈦合金在航空發動機中的用量一般占結構總重量的20%~30%,主要用於製造壓氣機部件,如鍛造鈦風扇、壓氣機盤和葉片、鑄鈦壓氣機機匣、中介機匣、軸承殼體等。太空飛行器主要利用鈦合金的高比強度,耐腐蝕和耐低溫性能來製造各種壓力容器、燃料貯箱、緊固件、儀器綁帶、構架和火箭殼體。人造地球衛星、登月艙、載人飛船和太空梭 也都使用鈦合金板材焊接件。
熱處理
常用的熱處理方法有退火、固溶和時效處理。退火是為了消除內應力、提高塑性和組織穩定性,以獲得較好的綜合性能。通常α合金和(α+β)合金退火溫度選在(α+β)─→β相轉變點以下120~200℃;固溶和時效處理是從高溫區快冷,以得到馬氏體α′相和亞穩定的β相,然後在中溫區保溫使這些亞穩定相分解,得到α相或化合物等細小彌散的第二相質點,達到使合金強化的目的。通常(α+β)合金的淬火在(α+β)─→β相轉變點以下40~100℃進行,亞穩定β合金淬火在(α+β)─→β相轉變點以上40~80℃進行。時效處理溫度一般為450~550℃。
總結,鈦合金的熱處理工藝可以歸納為:
(1)消除應力退火:目的是為消除或減少加工過程中產生的殘餘應力。防止在一些腐蝕環境中的化學侵蝕和減少變形。
(2)完全退火:目的是為了獲得好的韌性,改善加工性能,有利於再加工以及提高尺寸和組織的穩定性。
(3)固溶處理和時效:目的是為了提高其強度,α鈦合金和穩定的β鈦合金不能進行強化熱處理,在生產中只進行退火。α+β鈦合金和含有少量α相的亞穩β鈦合金可以通過固溶處理和時效使合金進一步強化。
此外,為了滿足工件的特殊要求,工業上還採用雙重退火、等溫退火、β熱處理、形變熱處理等金屬熱處理工藝。
切削
切削特點
鈦合金的硬度大於HB350時切削加工特別困難,小於HB300時則容易出現粘刀現象,也難於切削。但鈦合金的硬度只是難於切削加工的一個方面,關鍵在於鈦合金本身化學、物理、力學性能間的綜合對其切削加工性的影響。鈦合金有如下切削特點:
(1)變形係數小:這是鈦合金切削加工的顯著特點,變形係數小於或接近於1。切屑在前刀面上滑動摩擦的路程大大增大,加速刀具磨損。
(2)切削溫度高:由於鈦合金的導熱係數很小(只相當於45號鋼的1/5~1/7),切屑與前刀面的接觸長度極短,切削時產生的熱不易傳出,集中在切削區和切削刃附近的較小範圍內,切削溫度很高。在相同的切削條件下,切削溫度可比切削45號鋼時高出一倍以上。
(3)單位面積上的切削力大:主切削力比切鋼時約小20%,由於切屑與前刀面的接觸長度極短,單位接觸面積上的切削力大大增加,容易造成崩刃。同時,由於鈦合金的彈性模量小,加工時在徑向力作用下容易產生彎曲變形,引起振動,加大刀具磨損並影響零件的精度。因此,要求工藝系統應具有較好的剛性。
(4)冷硬現象嚴重:由於鈦的化學活性大,在高的切削溫度下,很容易吸收空氣中的氧和氮形成硬而脆的外皮;同時切削過程中的塑性變形也會造成表面硬化。冷硬現象不僅會降低零件的疲勞強度,而且能加劇刀具磨損,是切削鈦合金時的一個很重要特點。
(5)刀具易磨損:毛坯經過衝壓、鍛造、熱軋等方法加工後,形成硬而脆的不均勻外皮,極易造成崩刃現象,使得切除硬皮成為鈦合金加工中最困難的工序。另外,由於鈦合金對刀具材料的化學親和性強,在切削溫度高和單位面積上切削力大的條件下,刀具很容易產生粘結磨損。車削鈦合金時,有時前刀面的磨損甚至比後刀面更為嚴重;進給量f0.2 mm/r時,前刀面將出現磨損;用硬質合金刀具精車和半精車時,後刀面的磨損以VBmax