趙東升[數學家,教育家。]

趙東升[數學家,教育家。]

趙東升,男,1958年出生,漢族,陝西人,國際著名的數學家,新加坡南洋理工大學傑出教授,首批獲得ISI世界經典引文獎的17位中國數學家之一。

人物簡介

頭照 頭照

1981年畢業於陝西師範大學數學系,次年在我國著名數學家,陝西師範大學王國俊先生指導下攻讀拓撲專業碩士學位;

1988年赴英國劍橋大學攻讀博士,師從當代拓撲學泰斗,英國著名數學家Peter Johnstone ,

1993年獲得劍橋大學博士學位。

1994年至今在新加坡南洋理工大學 國立教育學院從事教學、研究。

趙東升教授在拓撲學領域有著很深的學術造詣,對世界拓撲學的發展做出了卓越的貢獻,讀大學時,不僅本科生階段的畢業論文《函式網上極限函式的連續性》對拓撲空間的極限函式提出了自己的見解,而且在此後研究生的學習階段(導師王國俊)和教學科研工作中取得了突出的成就,學生時代結束後,他在工作崗位上發光發熱,繼續為數學這門學科做著自己的貢獻。

研究領域

包括拓撲,序理論,廣義積分及Bair函式類,研究成果卓著,在《Proc. of American Mathematical Society》、《Fundamenta Mathematicae》、《Applied Categorical Structures》、《Canadian Mathematical Bulletin》、《Houstone Journal of Mathematics》、《Rocky Mountain Journal Of Mathematics》、《Quaestiones Mathematicae》,《Comment. Math. Univ. Carolinae》、《Journal of Mathematical Analysis and Applications》等數學名刊上均有論文發表,由於所發表論文被國外專家學者引用較多,其中一篇論文獲2000年ISI世界經典引文獎(Citation Classic Award),是中國首批獲此殊榮的17位數學家之一,在國際數學領域享有很高的讚譽。

主要貢獻

1987年,趙東升在王國俊先生的重大科技成果“良緊性”的基礎上,進一步將良緊性定義在L-FUZZY拓撲空間中,為模糊數學和拓撲學構建了一道橋樑,趙東升的這一成果也獲得了2000的ISI世界經典引文獎。

1997年,趙東升利用半素理想在完備格上給出了一種作用在點與點之間的新關係,從而定義了半連續格,這對於域理論的發展起到了極大的推進作用。

2010-2014年,主持新加坡國家政府重點項目《新加坡數學評估與教育工程》

2016年,趙東升發表在劍橋大學學報上的《Directed complete poset models of T1spaces》引起全世界研究電腦程式設計語義域理論同行的廣泛關注,這篇文章奠定了趙東升在國際域理論和經典拓撲學界的重要地位,也進一步說明了趙東升在域理論的極大點譜空間方面的研究處於國際領先地位。

2017年開始,趙東升開始主持課題《Modern links between topology and order structures via domains》,項目將揭示拓撲結構和域理論之間的更清晰和更深的連線,並可能在這些領域的進一步研究中套用。本課題所做的研究工作和成果將對域理論和拓撲結構的研究產生重大影響。

趙東升教授自1993年劍橋大學博士畢業之後作為新加坡政府人才引進受邀到新加坡南洋理工大學任教,但一直心繫國內的數學教育工作,堅持每年至少回國一次參加或組織學術會議並親自擔任大會主席和程式委員會委員等職務,除了自己回國之外,還多次率新加坡教育部的訪問團回國進行交流,將國外先進的教育理念和學術思想帶回國內。

論文列表

1.Maximal classes of spaces and domains determined by topologies on function spaces of domains, X. Xi, H. Liu, W. K. Ho and D. Zhao, Topology and Its Applications。

2.Spaces that have a bounded completedcpomodel,D. Zhao and X. Xi,Rocky Mountain J. Math. (toappear).

3.2-Absorbing delta-primary ideals in commutative rings,F.Brahim and D. Zhao, KyungpookMathematical Journal(to appear).

4.A new cardinal function on topological spaces,D. K. Sariand D. Zhao,Applied General Topology, 18(2017), 1: 75 – 90. PDF

5.Directed completeposetmodels ofTspaces,D. Zhao and X. Xi,Math. Proc. Cambridge Phil. Soc.

6.Rank commutators of families of matrices,F. Dong,W. Ho and D. Zhao,Southeast Asian Bulletin ofMaths(to appear).

7.Open set lattices of subspaces of spectrum spaces,Y. T. Nai and D. Zhao,DemonstratioMathematica, 48, 4: 637 – 652, 2015.

8.On ideals ofringsoffractions and polynomials, Y. T. Nai and D. Zhao,KodaiMath.J.38, 2: 333-342, 2015.

 

9.Well-filtered spaces and theirdcpomodels,X. XiandD. Zhao,Math Structures in Computer Science,

10.Closure spaces and completions ofposets,SemigroupForum,90,2:545-555, 2015.

11.On topologies defined by irreducible sets,D.ZhaoandW. K. Ho,J.Logical and Algebraic Methods in Programming, 84,

1: 185 – 195, 2015.

12.Reflexive index of a family of sets,KyungpookMath.J.54, 263-269, 2014.

13.Principal mappings betweenposets,Y. T. Nai and D. Zhao,Inter.J. Math. Math. Sciences,ArticleID 754019, 2014.

14.On the largestoutscribedequilateral triangle,F. Dong, D. Zhao and W. K. Ho,The Mathematical Gazette, 97,2014.

15.Some New Intrinsic Topologies on CompleteLattices and the CartesianClosednessof the Category ofStrongly Continuous Lattices,

X. Wu, Q.Li & D. Zhao, Abstract and applied analysis,Vol. 2013,Article ID 942628, 1-8.

16.A stonetypedualityfororthoposets,KochiJ.Math., Vol.8,pp. 19-34,2013.

17.Partialdcpo’sand some applications,Archiv.Math., Vol.48(4),pp.243-260, 2012.

18.Maximal outboxes of quadrilaterals,International Journal of Math. Education in Science and Technology,Vol. 42(4),pp. 534-540, 2011.

19.Apartialorderon the set of continuousendomappings,Houston J.ofMathematics, Vol. 37(1),pp. 311 – 326, 2011.

20.On reflexive closed set lattices,Z. Yangand D. Zhao,CommentationesMathematicaeUniversitatisCarolinae, Vol. 51(1), pp. 143 – 154, 2010.

21.Dcpo-completion ofposets,D. ZhaoandT. Fan,Theoretical Computer Science, Vol. 411,pp. 2167 – 2173,2010.

22.Lattices of Scott-closed sets,W. K. Ho and D. Zhao,CommentationesMathematicaeUniversitatisCarolinae,Vol. 50(2),pp. 297 – 314, 2009.

23.Gauges ofBaireClass One functions,Z.Atok, W.K. Tang and D. Zhao,Journal of Mathematical Analysis and Applications, Vol. 343, pp. 866-870, 2008.

24.Functions whose composition withBaireclass one functions arebaireclass one,Soochow Journal of Mathematics,Vol. 33(4), pp. 543 – 551,2007.PDF

25.Reflexive families of closed sets,Z. Yang and D. Zhao,FundamentaMathematicae, Vol. 192, pp. 111 – 120, 2006.

26.Lim-infconvergence in partially ordered sets,B. Zhao and D. Zhao,Journal of Mathematical Analysis and Applications, Vol. 309, pp. 701 – 708, 2005.

27.The Riemann integral using ordered open coverings,D. Zhao and P. Y.Lee,TheRocky Mountain Journal of Mathematics, Vol. 35(6), pp. 2129 – 2147, 2005.

28.A new compactness type topological property,QuaestionesMathematicae, Vol. 28, pp. 1 – 11, 2005.

29.Adjunctions defined by mappings,J.Indonesian Mathematical Society(MIHMI), Vol. 11(2), pp. 163 – 173, 2005.

30.On reflexivesubobjectlattices and reflexiveenodomorphismalgebras,CommentationesMathematicaeUniversitatisCarolinae,Vol. 44(1), pp. 23 – 32, 2003.

31.On the limits of a class of sequences,D. Zhao, T. Y. Lee, C. S. Leeand S. F. Yap,International Journal of Math. Education in Science and Technology, Vol. 33(1), pp. 123-127, 2002.

32.d-primary Ideals of Commutative Rings,KyungpookMathematical Journal,Vol. 41, pp. 17 – 22, 2001.

33.Z-Join SpectraofZ-SupercompactlyGenerated Lattices,M. Erne and D.Zhao,Applied Categorical Structures, Vol. 9(1),41– 63, 2001.

34.An equivalent definition of functions of the firstBaireclass, P. Y. Lee, W. K. Tang and D. Zhao,Proceedings of the American Mathematical Society,Vol. 129(8), pp. 2273 – 2275,2000.

35.MonadicityofInj_0 overTop,D. Zhao andB. Zhao,J. Math. Res. Exposition, vol. 20(4), pp. 475 – 482, 2000.

MR1795408(2001h:18006).

36.Moore-Smith limits and theHenstockintegral,G. I.June, P. Y.Lee and D. Zhao,Real Analysis Exchange, Vol. 24(1), pp. 447 – 455, 1998/99.MR1691764 (2000d:26010)

37.The categories of m-semilattices,D. Zhao and B. Zhao,Northeastern Mathematics Journal, Vol. 14(4), pp. 419 – 430, 1998.

38.On projective z-frames,Canadian Mathematical Bulletin, Vol. 40(1), pp. 39 – 46, 1997.

39.Semicontinuouslattices,AlgebraUniversalis, Vol. 37, pp. 458 – 476, 1997.

40.Bases of completely distributive lattices,J. Fuzzy Math., Vol. 5(1), pp. 103 – 109, 1997.MR1441019(98f:06008)

41.Nuclei on z-frames,Soochow Journal of Mathematics, Vol. 29(1), pp. 59 – 74,1996.

42.Upper and LowerHenstockIntegrals, P. Y. Lee and D. Zhao,Real Analysis Exchange, Vol. 22, pp. 734-739, 1996/1997.MR1460984(98h: 26010).

43.On the theory of φ-continuousposets,J. Engineering Math. Vol. 9(1), pp. 1-6., 1992.

44.Some characteristics of continuous lattices and completely distributive lattices,Chinese Quarterly Journal of Math,Vol. 1(2), pp. 162-165, 1990.

45.Bi-Scott topologies on lattices,Chinese Ann. Math., Ser. A, Vol.10(2),pp.187 – 193, 1989.MR1010287(91a:06016).

46.The structuresoforderinvolution,J.Shaanxi Normal University(Natural Science Edition),Vol. 17(2),pp. 1 -4, 1989.

47.Pseudo-uniformly continuous orderhomomorphismson Fuzz,Advancesin Mathematics(Beijing),Vol.16(3),pp.305--308.1987.

MR54A40 (03E72).

48.The N-compactness in L-fuzzytopologicalspaces,Journal of mathematical Analysis and Applications, Vol. 128(11), pp. 64 – 79, 1987.

49.A new type of fuzzy connectedness(Chinese), D. Zhao and G. Wang,Fuzzy Math. Vol. 4(4), pp. 15 -22, 1984.MR0844178(87g:54024).

50.The Fuzzy Decision of purchase in library.Y. Zhang, D.Zhao, Z. Yang,Fuzzy Math., Vol. 4,pp. 89-102, 1983.

51.The continuityofthelimit function ofnets of continuous functions,J.Shaanxi Normal University, Vol. 21 (1981), pp. 65 – 68.

52.Some strategies of posing mathematics problems,D. Zhao and C. S. Lee,

Discovering Mathematics, Vol. 28(1), pp. 9 -14, 2006.

53.On some maximum area problem II, D. Zhao, S. F. Yap andC. S. Lee, Mathematical Medley,

Vol. 30(1), pp. 23 – 29, 2003.

54.On some maximum area problem I, D. Zhao, S. F. Yap andC. S. Lee, Mathematical Medley,

Vol. 29(2), pp. 78 – 85, 2002.

55.Asking converse questions and looking for extensions to Gauss’s method for summing

arithmeticprogressions,E. G. Tay and D. Zhao,Math. Educators, Vol. 6(2), pp. 65 – 76, 2002.

56.Different approaches to the solution of a simple problem,T. Y. Lee, D. Zhao, S. F. Yap

andC. S. Lee, Discovering Mathematics, Vol. 23(1), pp. 1 – 9, 2001.

57.A note on an invariant sum problem in Geometry, D. Zhao, T. Y. Lee,S. F. Yap

andC. S. Lee, Mathematical Medley, Vol. 28(1), pp.9 – 12, 2001.

58.DcpomodelsofTspaces,D. Zhao and X. Xi, Proceedings of TACL 2013, pp. 220-223.

59.A generalization of Dilworth’s principal elements, D. Zhao and Y. T.Nai, In: Quantitative Logic and Soft Computing, pp. 573-580, World Scientific, 2012.

60.Some principles andguidelines for designing mathematics disciplinary tasks for Singapore schools,D. Zhao, W. K. Cheng, K. M. Teoand P. Y. Lee, Proceeding ofAAMT&MERGA,Australia,pp. 1107 -1115, 2011.

61.D-completions of net-convergence structures. W. K. Ho, D. Zhao and W. S. Wee,In: Quantitative Logic and Soft Computing, vol. 2, pp. 93 – 110,Springer, 2010.

62.Developing disciplinary tasks to improve mathematics assessment and pedagogy: An exploratory study in Singapore schools.L. Fan,D. Zhao, W. K. Cheangand K. M. Kok,Procedia- Social and Behavioral Sciences,vol. 2(2),pp. 2000 – 2005,Elsevier,2010.

63.Posetmodels of topological spaces,In: Proceeding of International Conference on Quantitative Logic and Quantification of Software,pp. 229-238,Global – Link Publisher,2009.

64.Filter convergence structure in posets.Asian Mathematics Conference (AMC), W. S. Wee, W. K. Ho and D. Zhao, 2009.

65.Scott closed set lattices and applications, Proceeding of the 5Seams – GMU International Conference on Mathematics and Its Applications,pp. 1 -16,Yogyakarta – Indonesia,2007.

66.Problem posingin teaching University Mathematics,D. ZhaoandP. Y. Lee,Proceedingofthe MERA – ERA JointConference,pp. 940 – 944,1999.

著作

1.Scaffolding and Constructing New problems for Teaching Mathematical Proofs in the A-levels,

IN: LEARNING EXPERIENCES TO PROMOTE MATHEMATICS LEARNING,

World Scientific, June 2014.

2 .LINEAR ALGEBRA – An Easy Introduction,

Teo Kok Ming & ZhaoDongsheng,August2013, McGrawHill.

3 .Plane Geometry ---Theorems, examples,exercises ,

ZhaoDongsheng& Yap Sook Fwe ,January 2011.

相關詞條

熱門詞條

聯絡我們