學歷及工作經歷
1990.9~1998.5 武漢科技大學化學工程專業 獲學士與碩士學位
1998.9~2001.6 華東理工大學化學工藝專業 獲博士學位
2001.10~2002.9 上海交通大學動力工程與工程熱物理 博士後流動站
2002.10~2003.10 韓國科學技術院KAIST機械宇航工程分部 博士後
2003.11~2004.5 加拿大University of New Brunswick化學工程系 博士後
2004.6~2004.8 美國University of Mississippi化學工程系 訪問學者
2004.10~2006.7 上海電力學院環境工程系 副教授
2006.8~2007.12 韓國Yonsei University能源/環境中心
2008.1~2009.7 英國University of Leeds能源所ERRI
2009.9~ 大連理工大學能動學院 教授
2010.7~ 大連理工大學能動學院 教授、博導
研究領域
煤熱解\氣化與高溫淨化子課題,IGCC煤氣化污染物高溫淨化,國家973基礎研究子課題G1999022104,參加
多功能高溫煤氣淨化研究,國家自然科學基金59776017,參加
納米孔道粘土內嵌氧化物深度脫除HCl和鹼金屬蒸氣污染物的研究,教育部留學回國啟動基金,負責
超聲處理負載多元氧化物的納米孔粘土選擇性脫除汞蒸氣的研究,上海市科委,負責
層狀矽酸鹽納米孔內嵌多元氧化物的可控制備及環境套用,上海市教委,負責
大型燃煤鍋爐煙氣脫硫關鍵技術研究,上海市重大科技專項,07DZ12013,負責
城市固體廢棄物熱解氣化燃燒處置,韓國科技部,參加
生物質制氫,英國EPRSC,Supergen,參加
移動床連續催化吸附強化重整制氫新體系,教育部新世紀優秀人才項目,負責
生物柴油副產甘油重整CO2原位吸附強化低溫制氫研究,遼寧省首批十百千高端人才引進工程啟動項目,負責
循環流化床粉煤氣化,山東萬豐煤化工有限公司,負責
新一代純氧燃燒循環流化床生物質鍋爐,江蘇四方鍋爐有限公司,負責
生物柴油副產物甘油連續催化吸附強化重整制氫機理研究,國家自然科學基金51276032,負責
碩博研究方向
可再生能源轉化制氫及過程強化
傳統能源高效轉化與清潔利用
煙氣脫硫、脫硝、脫除CO2及重金屬污染物的排放控制
出版著作和論文
[1] Dou B. L., Wang C., Chen H. S., Song Y. C., et al. Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: A Review. Chemical Engineering Research and Design, 2012.90,1901-1917.
[2] Xu Y. J., Zang G. Y., Chen H. S., Dou B. L., Tan C.Q. Co-production system of hydrogen and electricity based on coal partial gasification with CO2 capture, International Journal of Hydrogen Energy, 2012, 37, 11805-11814.
[3] Ruan X. K., Song Y. C., Liang H. F., Yang M. J., Dou B. L. Numerical Simulation of the Gas Production Behavior of Hydrate Dissociation by Depressurization in Hydrate-Bearing Porous Medium. Energy Fuels, 2012. 26, 1681-1694.
[4] Chen H. S., Dou B. L., Song Y. C., Xu Y. J., et al., Studies on absorption and regeneration for CO2 capture by aqueous ammonia, International Journal of Greenhouse Gas Control,2012,6:171-178.
[5] Chen H. S., Dou B. L., Song Y. C., Xu Y. J., et al., Pyrolysis characteristics of sucrose biomass in a tubing reactor and a thermogravimetric system, Fuel,2012,95:425-430.
[6] Chen H. S., Dou B. L. Enhanced hydrogen production from the glycerol steam reforming process through CO2 removal, In: Hydrogen Production: Prospects and Processes, Eds. D.R. Honnery and P. Moriarty, Nova Science Publishers, 2011, pp223-246.
[7] Dou B. L., Chen H. S., Song Y. C., Tan C. T. Synthesis and characterization of heterostructured nanohybrid of MgO-TiO2-Al2O3/montmorillonite. Mater. Chem. Phys., 2011, 130, 63-66
[8] Zhao Y. C, Song, Y. C. Liu Y., Liang H. F., Dou B. L. Visualization and Measurement of CO2 Flooding in Porous Media Using MRI. Ind. Eng. Chem. Res., 2011, 50 (8), 4707-4715.
[9] Dou B. L.; Dupont V.; Pan W. G.; Chen B. B. Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite, Chemical Engineering Journal, 2011, 166, 631-638.
[10] Dou B.L. Chen H.S. Removal of toxic mercury(II) from aquatic solutions by synthesized TiO2 nanoparticles. Desalination, 2011, 269, 260-265.
[11] Chen H.S., Ding Y.L., Cong N.T., Dou B.L., Dupont V., Ghadiri M., Williams PT. Progress in low temperature hydrogen production with simultaneous CO2 abatement. Chemical Engineering Research and Design, 2011, 89, 1774-1782.
[12] Chen H.S., Ding Y.L., Cong N.T., Dou B.L, Dupont V., Ghadiri M, Williams PT. A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renewable Energy, 2011, 36, 779-788.
[13] Dou B.L. Song Y.C. Liu Y.G.., High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor, Journal of Hazardous Materials, 2010, 183, 759-765.
[14] Dou B.L. Song Y.C., A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidised-bed reactor. International Journal of Hydrogen Energy, 2010, 35, 10271-10284.
[15] Dou B. L., Rickett G., Dupont V., Williams P. T., Chen H. S., Ding Y., Ghadiri M. Steam reforming of crude glycerol with in-situ CO2 sorption. Bioresource Technology, 2010, 101, 2436-2442.
[16] Dou B. L., Dupont V., Rickett G., Blakeman N., Williams P. T., Chen H. S., Ding Y., Ghadiri M. Hydrogen production by sorption-enhanced steam reforming of glycerol. Bioresource Technology, 2009. 100, 3540-3547.
[17] Dou B. L., Dupont V., Williams P. T., Chen H. S., Ding Y. Thermogravimetic kinetics of crude glycerol. Bioresource Technology, 2009, 100: 2613-2620.
[18] Chen H. S., Zhang T. F., Dou B. L., Dupont V., Williams P. T., Ghadiri M, Ding Y. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 2009, 34: 7208-7222.
[19].Dou B. L.; Pan W. G.; Jin Q.; Wang W. H.; Li Y., Study on SO2 removal efficiency for wet Flue Gas Desulfurization. Energy Conversion and Management, 2009, 50, 2547-2553.
[20]. Chen H.; Ge H.H.; Dou B. L.; Pan W. G.; Zhou G. D. Thermogravimetric Kinetics of MgSO3?6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization, Energy & Fuels, 2009, 23(5), 2552–2556.
[21].Dou, B. L.; Byun, Y.-C.; Hwang, J. Flue Gas Desulfurization with an Electrostatic Spraying Absorber. Energy & Fuels; 2008; 22(2); 1041-1045.
[22] Dou B. L., Dupont V., Williams P. T. Computational fluid dynamics simulation of gas-solid flow during steam reforming of glycerol in a fluidised bed reactor. Energy & Fuels, 2008, 22: 4102–4108.
[23].Dou, B. L.; Pan, W. G.; Ren, J. X.; Chen, B. B. Removal of Tar Component over Cracking Catalysts from High Temperature Fuel Gas. Energy Conversion and Management, 2008, 49, 2247-2253.
[24] Dou, B.L; Dupont, V.; Williams, P. T. Modeling of gas-solid flow and hydrogen production from steam reforming of glycerol in a fluidized bed reactor. Prep. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2008, 53 (2), 628-629.
[25].Dou, B. L.; Lim, S.; Kang, P.; Hwang, J.; Song, S.; Yu, T.-U.; Yoon, K.-D. Kinetic Study in Modeling Pyrolysis of Refuse Plastic Fuel. Energy & Fuels; 2007; 21(3); 1442-1447.
[26].Dou, B. L.; Park, S.; Lim, S.; Yu, T.; Hwang, J. Pyrolysis Characteristics of Refuse Derived Fuel in a Pilot-Scale Unit. Energy & Fuels; 2007; 21(6); 3730-3734.
[27].Dou, B. L.; Pan, W. G.; Ren, J. X,; Chen, B B.. Single and Combined Removal of HCl and Alkali Metal Vapor from High-temperature Gas by Solid Sorbents. Energy & Fuels; 2007; 21(2); 1019-1023.
[28] Dou B. L.; Chen B. B.; Gao J. S.; Sha X. Z., HCl removal and chlorine distribution of sorbent in a fixed-bed reactor, Energy & Fuels, 2006,20:959-963.
[29] Dou B. L.; Chen B. B.; Gao J. S.; Sha X. Z., Reaction of solid sorbents with hydrogen chloride gas at high temperature in a fixed-bed reactor, Energy & Fuels, 2005,19:2229-2234.
[30] Dou B. L.; Shen W. Q.; Gao J. S.; et al, Adsorption of alkali metal vapor from high-temperature coal-derived gas by solid sorbents, Fuel Processing Technology, 2003, 82, 51-60.
[31] Dou B. L.; Gao J. S.; Sha X. Z.; Baek S. W., Catalytic cracking of tar component from high temperature fuel gas, Applied Thermal Engineering, 2003, 23: 2229-2239.
[32] Dou B. L.; Gao J. S.; Baek S. W.; Sha X. Z., High temperature HCl removal with sorbents in a fixed-bed reactor, Energy & Fuels, 2003, 17: 874-878.
[33] Yin B., Zhang M.C. Dou B.L. Song Y.B. and Wu J. Discrete Particle Simulation and Visualized Research of the Gas?Solid Flow in an Internally Circulating Fluidized Bed. Ind. Eng. Chem. Res., 2003, 42 (1), 214–221.
[34] Dou B. L.; Zhang M. C.; Gao J. S.; Sha X. Z., High-temperature removal of NH3, organic sulfur, HCl and tar component from coal-derived gas, Ind Eng Chem Res, 2002, 41:4195-4200.
[35] Dou B. L.; Gao J. S.; Sha X. Z., Study on the reaction kinetics of HCl removal from a high-temperature coal gas, Fuel Processing Technology, 2001, 72:23-33.