定義分類
按廣義
計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連線的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為在線上系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智慧型,因而“終端”和“自治的計算機”逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
另外,從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連線起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。
從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路作業系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。
一個比較通用的定義是:利用通信線路將地理上分散的、具有獨立功能的計算機系統和通信設備按不同的形式連線起來,以功能完善的網路軟體及協定實現資源共享和信息傳遞的系統。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。簡單來說,計算機網路就是由通信線路互相連線的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連線它們的一條鏈路,即兩個節點和一條鏈路。
按連線
計算機網路就是通過線路互連起來的、資質的計算機集合,確切的說就是將分布在不同地理位置上的具有獨立工作能力的計算機、終端及其附屬設備用通信設備和通信線路連線起來,並配置網路軟體,以實現計算機資源共享的系統。
按需求
計算機網路就是由大量獨立的、但相互連線起來的計算機來共同完成計算機任務。這些系統稱為 計算機網路(computer networks)
發展歷程
中國計算機網路設備製造行業是改革開放後成長起來的,早期與世界先進水平存在巨大差距;但受益於計算機網路設備行業生產技術不斷提高以及下游需求市場不斷擴大,我國計算機網路設備製造行業發展十分迅速。近兩年,隨著我國國民經濟的快速發展以及國際金融危機的逐漸消退,計算機網路設備製造行業獲得良好發展機遇,中國已成為全球計算機網路設備製造行業重點發展市場。
2010年我國計算機網路設備製造行業規模以上企業有171家,全年實現銷售收入385.70億元,同比增長15.64%;實現利潤總額39.83億元,同比增長24.93%;產品銷售利潤為72.18億元,同比增長44.34%。2011年,在國內巨觀經濟向好的環境及電信產業投資高速增長產生的需求帶動下,計算機網路設備製造行業將繼續保持較好發展。2011年1-5月,計算機網路設備製造行業銷售收入較上年同期增長19.78%;利潤總額較上年同期增長48.61%;產品銷售利潤則較上年同期增長42.36%。
我國計算機網路設備製造企業主要分布在華東和華南地區,其中又以廣東、江蘇、浙江三地企業分布最為集中,且是全國計算機網路設備製造行業發展領先的地區,2010年行業銷售收入均在84億元以上。與此同時,四川、湖北及上海地區的計算機網路設備製造行業也得到了快速發展,2010年銷售收入增長率均在30%以上。
第一代計算機網路---遠程終端在線上階段;
第二代計算機網路---計算機網路階段;
第三代計算機網路---計算機網路互聯階段;
第四代計算機網路---國際網際網路與信息高速公路階段;
早期年代
過去人們開始將彼此獨立發展的計算機技術與通信技術結合起來,完成了數據通信與計算機通信網路的研究,為計算機網路的出現做好了技術準備,奠定了理論基礎。
分組交換
20世紀60年代,美蘇冷戰期間,美國國防部領導的遠景研究規劃局ARPA提出要研製一種嶄新的網路對付來自前蘇聯的核攻擊威脅。因為當時,傳統的電路交換的電信網雖已經四通八達,但戰爭期間,一旦正在通信的電路有一個交換機或鏈路被炸,則整個通信電路就要中斷,如要立即改用其他迂迴電路,還必須重新撥號建立連線,這將要延誤一些時間。這個新型網路必須滿足一些基本要求:
1:不是為了打電話,而是用於計算機之間的數據傳送。
2:能連線不同類型的計算機。
3:所有的網路節點都同等重要,這就大大提高了網路的生存性。
4:計算機在通信時,必須有迂迴路由。當鏈路或結點被破壞時,迂迴路由能使正在進行的通信自動地找到合適的路由。
5:網路結構要儘可能地簡單,但要非常可靠地傳送數據。
根據這些要求,一批專家設計出了使用分組交換的新型計算機網路。而且,用電路交換來傳送計算機數據,其線路的傳輸速率往往很低。因為計算機數據是突髮式地出現在傳輸線路上的,比如,當用戶閱讀終端螢幕上的信息或用鍵盤輸入和編輯一份檔案時或計算機正在進行處理而結果尚未返回時,寶貴的通信線路資源就被浪費了。
分組交換是採用存儲轉發技術。把欲傳送的報文分成一個個的“分組”,在網路中傳送。分組的首部是重要的控制信息,因此分組交換的特徵是基於標記的。分組交換網由若干個結點交換機和連線這些交換機的鏈路組成。從概念上講,一個結點交換機就是一個小型的計算機,但主機是為用戶進行信息處理的,結點交換機是進行分組交換的。每個結點交換機都有兩組連線埠,一組是與計算機相連,鏈路的速率較低。一組是與高速鏈路和網路中的其他結點交換機相連。注意,既然結點交換機是計算機,那輸入和輸出連線埠之間是沒有直接連線的,它的處理過程是:將收到的分組先放入快取,結點交換機暫存的是短分組,而不是整個長報文,短分組暫存在交換機的存儲器(即記憶體)中而不是存儲在磁碟中,這就保證了較高的交換速率。再查找轉發表,找出到某個目的地址應從那個連線埠轉發,然後由交換機構將該分組遞給適當的連線埠轉發出去。各結點交換機之間也要經常交換路由信息,但這是為了進行路由選擇,當某段鏈路的通信量太大或中斷時,結點交換機中運行的路由選擇協定能自動找到其他路徑轉發分組。通訊線路資源利用率提高:當分組在某鏈路時,其他段的通信鏈路並不被通信的雙方所占用,即使是這段鏈路,只有當分組在此鏈路傳送時才被占用,在各分組傳送之間的空閒時間,該鏈路仍可為其他主機傳送分組。可見採用存儲轉發的分組交換的實質上是採用了在數據通信的過程中動態分配傳輸頻寬的策略。
網際網路時代
Internet的基礎結構大體經歷了三個階段的演進,這三個階段在時間上有部分重疊。
1:從單個網路ARPAnet向網際網路發展:1969年美國國防部創建了第一個分組交換網ARPAnet只是一個單個的分組交換網,所有想連線在它上的主機都直接與就近的結點交換機相連,它規模增長很快,到70年代中期,人們認識到僅使用一個單獨的網路無法滿足所有的通信問題。於是ARPA開始研究很多網路互聯的技術,這就導致後來的網際網路的出現。1983年TCP/IP協定稱為ARPAnet的標準協定。同年,ARPAnet分解成兩個網路,一個進行試驗研究用的科研網ARPAnet,另一個是軍用的計算機網路MILnet。1990,ARPAnet因試驗任務完成正式宣布關閉。
2:建立三級結構的網際網路:1985年起,美國國家科學基金會NSF就認識到計算機網路對科學研究的重要性,1986年,NSF圍繞六個大型計算機中心建設計算機網路NSFnet,它是個三級網路,分主幹網、地區網、校園網。它代替ARPAnet成為internet的主要部分。1991年,NSF和美國政府認識到網際網路不會限於大學和研究機構,於是支持地方網路接入,許多公司的紛紛加入,使網路的信息量急劇增加,美國政府就決定將網際網路的主幹網轉交給私人公司經營,並開始對接入網際網路的單位收費。
3:多級結構網際網路的形成:1993年開始,美國政府資助的NSFnet就逐漸被若干個商用的網際網路主幹網替代,這種主幹網也叫網際網路服務提供者ISP,考慮到網際網路商用化後可能出現很多的ISP,為了使不同ISP經營的網路能夠互通,在1994創建了4個網路接入點NAP分別由4個電信公司經營,本世紀初,美國的NAP達到了十幾個。NAP是最高級的接入點,它主要是向不同的ISP提供交換設備,使它們相互通信。網際網路已經很難對其網路結構給出很精細的描述,但大致可分為五個接入級:網路接入點NAP,多個公司經營的國家主幹網,地區ISP,本地ISP,校園網、企業或家庭PC機上網用戶。
組成分類
計算機網路的分類與一般的事物分類方法一樣,可以按事物所具有的不同性質特點(即事物的屬性)分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連線在一起組成的。總的來說計算機網路的組成基本上包括:計算機、網路作業系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的套用軟體四部分。
要學習網路,首先就要了解主要網路類型,分清哪些是我們初級學者 必須掌握的,哪些是的主流網路類型。
主要網路
雖然網路類型的劃分標準各種各樣,但是從地理範圍劃分是一種大家都認可的通用網路劃分標準。按這種標準可以把各種網路類型劃分為區域網路、城域網、廣域網和網際網路四種。區域網路一般來說只能是一個較小區域內,城域網是不同地區的網路互聯,不過在此要說明的一點就是這裡的網路劃分並沒有嚴格意義上地理範圍的區分,只能是一個定性的概念。下面簡要介紹這幾種計算機網路。
區域網路
(Local Area Network;LAN) 通常我們常見的“LAN”就是指區域網路,這是我們最常見、套用最廣的一種網路。區域網路隨著整個計算機網路技術的發展和提高得到充分的套用和普及,幾乎每個單位都有自己的區域網路,有的甚至家庭中都有自己的小型區域網路。很明顯,所謂區域網路,那就是在局部地區範圍內的網路,它所覆蓋的地區範圍較小。區域網路在計算機數量配置上沒有太多的限制,少的可以只有兩台,多的可達幾百台。一般來說在企業區域網路中,工作站的數量在幾十到兩百台次左右。在網路所涉及的地理距離上一般來說可以是幾米至10公里以內。區域網路一般位於一個建築物或一個單位內,不存在尋徑問題,不包括網路層的套用。
這種網路的特點就是:連線範圍窄、用戶數少、配置容易、連線速率高。目前區域網路最快的速率要算現今的10G乙太網了。IEEE的802標準委員會定義了多種主要的LAN網:乙太網(Ethernet)、令牌環網(Token Ring)、光纖分散式接口網路(FDDI)、異步傳輸模式網(ATM)以及最新的無線區域網路(WLAN)。這些都將在後面詳細介紹。
城域網
(Metropolitan Area Network;MAN) 這種網路一般來說是在一個城市,但不在同一地理小區範圍內的計算機互聯。這種網路的連線距離可以在10 ̄100公里,它採用的是IEEE802.6標準。MAN與LAN相比擴展的距離更長,連線的計算機數量更多,在地理範圍上可以說是LAN網路的延伸。在一個大型城市或都市地區,一個MAN網路通常連線著多個LAN網。如連線政府機構的LAN、醫院的LAN、電信的LAN、公司企業的LAN等等。由於光纖連線的引入,使MAN中高速的LAN互連成為可能。
城域網多採用ATM技術做骨幹網。ATM是一個用於數據、語音、視頻以及多媒體應用程式的高速網路傳輸方法。ATM包括一個接口和一個協定,該協定能夠在一個常規的傳輸信道上,在比特率不變及變化的通信量之間進行切換。ATM也包括硬體、軟體以及與ATM協定標準一致的介質。ATM提供一個可伸縮的主幹基礎設施,以便能夠適應不同規模、速度以及定址技術的網路。ATM的最大缺點就是成本太高,所以一般在政府城域網中套用,如郵政、銀行、醫院等。
廣域網
(Wide Area Network;WAN) 這種網路也稱為遠程網,所覆蓋的範圍比城域網(MAN)更廣,它一般是在不同城市之間的LAN或者MAN網路互聯,地理範圍可從幾百公里到幾千公里。因為距離較遠,信息衰減比較嚴重,所以這種網路一般是要租用專線,通過IMP(接口信息處理)協定和線路連線起來,構成網狀結構,解決循徑問題。這種城域網因為所連線的用戶多,總出口頻寬有限,所以用戶的終端連線速率一般較低,通常為9.6Kbps ̄45Mbps 如:郵電部的CHINANET,CHINAPAC,和CHINADDN網。
上面講了網路的幾種分類,其實在現實生活中我們真正遇得最多的還要算是區域網路,因為它可大可小,無論在單位還是在家庭實現起來都比較容易,套用也是最廣泛的一種網路,所以在下面我們有必要對區域網路及區域網路中的接入設備作一個進一步的認識。
無線網
隨著筆記本電腦(notebook computer)和個人數字助理( Personal Digital Assistant,PDA)等攜帶型計算機的日益普及和發展,人們經常要在路途中接聽電話、傳送傳真和電子郵件閱讀網上信息以及登錄到遠程機器等。然而在汽車或飛機上是不可能通過有線介質與單位的網路相連線的,這時候可能會對無線網感興趣了。雖然無線網與移動通信經常是聯繫在一起的,但這兩個概念並不完全相同。表1 - 2給出了它們之間的對比。例如當攜帶型計算機通過P C M C I A卡接入電話插口,它就變成有線網的一部分。另一方面,有些通過無線網連線起來的計算機的位置可能又是固定不變的,如在不便於通過有線電纜連線的大樓之間就可以通過無線網將兩棟大樓內的計算機連線在一起。
無線網特別是無線區域網路有很多優點,如易於安裝和使用。但無線區域網路也有許多不足之處:如它的數據傳輸率一般比較低,遠低於有線區域網路;另外無線區域網路的誤碼率也比較高,而且站點之間相互干擾比較厲害。用戶無線網的實現有不同的方法。國外的某些大學在它們的校園內安裝許多天線,允許學生們坐在樹底下查看圖書館的資料。這種情況是通過兩個計算機之間直接通過無線區域網路以數字方式進行通信實現的。另一種可能的方式是利用傳統的模擬數據機通過蜂窩電話系統進行通信。在國外的許多城市已能提供蜂窩式數字信息分組數據( Cellular Digital Packet Data,C D P D)的業務,因而可以通過C D P D系統直接建立無線區域網路。無線網路是當前國內外的研究熱點,無線網路的研究是由巨大的市場需求驅動的。無線網的特點是使用戶可以在任何時間、任何地點接入計算機網路,而這一特性使其具有強大的套用前景。當前已經出現了許多基於無線網路的產品,如個人通信系統( Personal CommunicationS y s t e m,P C S)電話、無線數據終端、攜帶型可視電話、個人數字助理( P D A)等。無線網路的發展依賴於無線通信技術的支持。無線通信系統主要有:低功率的無繩電話系統、模擬蜂窩系統、數字蜂窩系統、移動衛星系統、無線L A N和無線WA N等。
性能
計算機網路的性能一般是指它的幾個重要的性能指標。但除了這些重要的性能指標外,還有一些非性能特徵,它們對計算機網路的性能也有很大的影響。
1.計算機網路的性能指標
性能指標從不同的方面來度量計算機網路的性能。
(1)速率
計算機傳送出的信號都是數字形式的。比特是計算機中數據量的單位,也是資訊理論中使用的信息量的單位。英文字bit來源於binary digit,意思是一個“二進制數字”,因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是連線在計算機網路上的主機在數字信道上傳送數據的速率,它也稱為數據率(data rate)或比特率(bit rate)。速率是計算機網路中最重要的一個性能指標。速率的單位是bit/s(比特每秒)(即bit per second)。現在人們常用更簡單的並且是很不嚴格的記法來描述網路的速率,如100M乙太網,它省略了單位中的bit/s,意思是速率為100Mbit/s的乙太網。
(2)頻寬
“頻寬”有以下兩種不同的意義。
① 頻寬本來是指某個信號具有的頻頻寬度。信號的頻寬是指該信號所包含的各種不同頻率成分所占據的頻率範圍。例如,在傳統的通信線路上傳送的電話信號的標準頻寬是3.1kHz(從300Hz到3.4kHz,即話音的主要成分的頻率範圍)。這種意義的頻寬的單位是赫(或千赫,兆赫,吉赫等)。
② 在計算機網路中,頻寬用來表示網路的通信線路所能傳送數據的能力,因此網路頻寬表示在單位時間內從網路中的某一點到另一點所能通過的“最高數據率”。這裡一般說到的“頻寬”就是指這個意思。這種意義的頻寬的單位是“比特每秒”,記為bit/s。
(3)吞吐量
吞吐量表示在單位時間內通過某個網路(或信道、接口)的數據量。吞吐量更經常地用於對現實世界中的網路的一種測量,以便知道實際上到底有多少數據量能夠通過網路。顯然,吞吐量受網路的頻寬或網路的額定速率的限制。例如,對於一個100Mbit/s的乙太網,其額定速率是100Mbit/s,那么這個數值也是該乙太網的吞吐量的絕對上限值。因此,對100Mbit/s的乙太網,其典型的吞吐量可能也只有70Mbit/s。有時吞吐量還可用每秒傳送的位元組數或幀數來表示。
(4)時延
時延是指數據(一個報文或分組,甚至比特)從網路(或鏈路)的一端傳送到另一端所需的時間。時延是個很重要的性能指標,它有時也稱為延遲或遲延。網路中的時延是由以下幾個不同的部分組成的。
① 傳送時延。
傳送時延是主機或路由器傳送數據幀所需要的時間,也就是從傳送數據幀的第一個比特算起,到該幀的最後一個比特傳送完畢所需的時間。
因此傳送時延也叫做傳輸時延。傳送時延的計算公式是:
傳送時延=數據幀長度(bit/s)/信道頻寬(bit/s)
由此可見,對於一定的網路,傳送時延並非固定不變,而是與傳送的幀長(單位是比特)成正比,與信道頻寬成反比。
② 傳播時延。
傳播時延是電磁波在信道中傳播一定的距離需要花費的時間。傳播時延的計算公式是:
傳播時延=信道長度(m)/電磁波在信道上的傳播速率(m/s)
電磁波在自由空間的傳播速率是光速,即3.0×10km/s。電磁波在網路傳輸媒體中的傳播速率比在自由空間要略低一些。
③ 處理時延。
主機或路由器在收到分組時要花費一定的時間進行處理,例如分析分組的首部,從分組中提取數據部分,進行差錯檢驗或查找適當的路由等,這就產生了處理時延。
④ 排隊時延。
分組在經過網路傳輸時,要經過許多的路由器。但分組在進入路由器後要先在輸入佇列中排隊等待處理。在路由器確定了轉發接口後,還要在輸出佇列中排隊等待轉發。這就產生了排隊時延。
這樣,數據在網路中經歷的總時延就是以上四種時延之和:
總時延=傳送時延+傳播時延+處理時延+排隊時延
(5)時延頻寬積
把以上討論的網路性能的兩個度量—傳播時延和頻寬相乘,就得到另一個很有用的度量:傳播時延頻寬積,即時延頻寬積=傳播時延×頻寬。
(6)往返時間(RTT)
在計算機網路中,往返時間也是一個重要的性能指標,它表示從傳送方傳送數據開始,到傳送方收到來自接收方的確認(接受方收到數據後便立即傳送確認)總共經歷的時間。
當使用衛星通信時,往返時間(RTT)相對較長。
(7)利用率
利用率有信道利用率和網路利用率兩種。信道利用率指某信道有百分之幾的時間是被利用的(有數據通過),完全空閒的信道的利用率是零。網路利用率是全網路的信道利用率的加權平均值。
2.計算機網路的非性能特徵
這些非性能特徵與前面介紹的性能指標有很大的關係。
(1)費用
即網路的價格(包括設計和實現的費用)。網路的性能與其價格密切相關。一般說來,網路的速率越高,其價格也越高。
(2)質量
網路的質量取決於網路中所有構件的質量,以及這些構件是怎樣組成網路的。網路的質量影響到很多方面,如網路的可靠性、網路管理的簡易性,以及網路的一些性能。但網路的性能與網路的質量並不是一回事,例如,有些性能也還可以的網路,運行一段時間後就出現了故障,變得無法再繼續工作,說明其質量不好。高質量的網路往往價格也較高。
(3)標準化
網路的硬體和軟體的設計既可以按照通用的國際標準,也可以遵循特定的專用網路標準。最好採用國際標準的設計,這樣可以得到更好的互操作性,更易於升級換代和維修,也更容易得到技術上的支持。
(4)可靠性
可靠性與網路的質量和性能都有密切關係。速率更高的網路,其可靠性不一定會更差。但速率更高的網路要可靠地運行,則往往更加困難,同時所需的費用也會較高。
(5)可擴展性和可升級性
網路在構造時就應當考慮到今後可能會需要擴展(即規模擴大)和升級(即性能和版本的提高)。網路的性能越高,其擴展費用往往也越高,難度也會相應增加。
(6)易於管理和維護
網路如果沒有良好的管理和維護,就很難達到和保持所設計的性能。
體系結構
要想讓兩台計算機進行通信,必須使它們採用相同的信息交換規則。我們把在計算機網路中用於規定信息的格式以及如何傳送和接收信息的一套規則稱為網路協定(network protocol)或通信協定(communication protocol)。
為了減少網路協定設計的複雜性,網路設計者並不是設計一個單一、巨大的協定來為所有形式的通信規定完整的細節,而是採用把通信問題劃分為許多個小問題,然後為每個小問題設計一個單獨的協定的方法。這樣做使得每個協定的設計、分析、編碼和測試都比較容易。分層模型(layering model)是一種用於開發網路協定的設計方法。本質上,分層模型描述了把通信問題分為幾個小問題(稱為層次)的方法,每個小問題對應於一層。
在計算機網路中要做到有條不紊地交換數據,就必須遵守一些事先約定好的規則。這些規則明確規定了所交換的數據格式以及有關的同步問題。這裡所說的同步不是狹義的(即同頻或同頻同相)而是廣義的,即在一定的條件下應當發生什麼事件(如傳送一個應答信息),因而同步含有時序的意思。這些為進行網路中的數據交換而建立的規則、標準或約定稱為網路協定,網路協定也可簡稱為協定。網路協定主要由以下三個要素組成。
① 語法,即數據與控制信息的結構或格式。
② 語義,即需要發出何種控制信息,完成何種動作以及做出何種回響。
③ 同步,即事件實現順序的詳細說明。
網路協定是計算機網路的不可缺少的組成部分。
協定通常有兩種不同的形式。一種是使用便於人來閱讀和理解的文字描述,另一種是使用計算機能夠理解的程式代碼。
對於非常複雜的計算機網路協定,其結構應該是層次式的。分層可以帶來許多好處。
① 各層之間是獨立的。某一層並不需要知道它的下一層是如何實現的,而僅僅需要知道該層通過層間的接口(即界面)所提供的服務。由於每一層只實現一種相對獨立的功能,因而可將一個難以處理的複雜問題分解為若干個較容易處理的更小一些的問題。這樣,整個問題的複雜程度就下降了。
② 靈活性好。當任何一層發生變化時(例如由於技術的變化),只要層間接口關係保持不變,則在這層以上或以下各層均不受影響。此外,對某一層提供的服務還可進行修改。當某層提供的服務不再需要時,甚至可以將這層取消。
③ 結構上可分割開。各層都可以採用最合適的技術來實現。
④ 易於實現和維護。這種結構使得實現和調試一個龐大而又複雜的系統變得易於處理,因為整個的系統已被分解為若干個相對獨立的子系統。
⑤ 能促進標準化工作。因為每一層的功能及其所提供的服務都已有了精確的說明。
分層時應注意使每一層的功能非常明確。若層數太少,就會使每一層的協定太複雜。但層數太多又會在描述和綜合各層功能的系統工程任務時遇到較多的困難。
我們把計算機網路的各層及其協定的集合,稱為網路的體系結構。換種說法,計算機網路的體系結構就是這個計算機網路及其構件所應完成的功能的精確定義。需要強調的是:這些功能究竟是用何種硬體或軟體完成的,則是一個遵循這種體系結構的實現的問題。體系結構的英文名詞architecture的原意是建築學或建築的設計和風格。但是它和一個具體的建築物的概念很不相同。我們也不能把一個具體的計算機網路說成是一個抽象的網路體系結構。總之,體系結構是抽象的,而實現則是具體的,是真正在運行的計算機硬體和軟體。
圖5.8所示是計算機網路體系結構示意圖。其中圖5.8(a)是OSI的七層協定體系結構圖、圖5.8(b)是TCP/IP四層體系結構、圖5.8(c)是五層協定的體系結構。五層協定的體系結構綜合了前兩種體系結構的優點,既簡潔又能將概念闡述清楚。
無線網路
近年來,無線蜂窩電話通信技術得到了飛速發展。人們也希望能夠在移動通信中使用計算機網路。隨著便攜機和個人數字助理(PDA)的普遍使用,無線計算機網路也逐漸流行起來。
1.無線區域網路(WLAN)
無線區域網路提供了移動接入的功能,這就給許多需要傳送數據但又不能坐在辦公室的工作人員提供了方便。當大量持有攜帶型電腦的用戶都在同一個地方同時要求上網時,若用電纜連網,那么布線就是個很大的問題。這時若採用無線區域網路則比較容易。
無線區域網路可分為兩大類。第一類是有固定基礎設施的,第二類是無固定基礎設施的。所謂“固定基礎設施”是指預先建立起來的、能夠覆蓋一定地理範圍的一批固定基礎。大家經常使用的蜂窩行動電話就是利用電信公司預先建立的、覆蓋全國的大量固定基站來接通用戶手機撥打的電話。
另一類無線區域網路是無固定基礎設施的無線區域網路,它又叫做自組網路。這種自組網路沒有上述基本服務集中的接入點(AP),而是由一些處於平等狀態的移動站之間相互通信組成的臨時網路。
自組網路通常是這樣構成的:一些可移動的設備發現在它們附近還有其他的可移動設備,並且要求和其他移動設備進行通信。隨著攜帶型電腦的大量普及,自組網路的組網方式已受到人們的廣泛關注。由於在自組網路中的每一個移動站都要參與到網路中的其他移動站的路由的發現和維護,同時由移動站構成的網路拓撲有可能隨時間變化得很快,因此在固定網路中行之有效的一些路由選擇協定對移動自組網路已不適用。這樣,在自組網路中路由選擇協定就引起了特別的關注。另一個重要問題是多播。在移動自組網路中往往需要將某個重要信息同時向多個移動站傳送。這種多播比固定節點網路的多播要複雜得多,需要有實時性好而效率又高的多播協定。在移動自組網路中,安全問題也是一個更為突出的問題。
移動自組網路在軍用和民用領域都有很好的套用前景。在軍事領域中,由於戰場上往往沒有預先建好的固定接入點,其移動站就可以用臨時建立的移動自組網路進行通信。這種組網方式也能夠套用到作戰的地面車輛群和坦克群,以及海上的艦艇群、空中的機群。由於每一個移動設備都具有路由器轉發分組的功能,因此分散式的移動自組網路的生存性非常好。在民用領域,持有筆記本電腦的人可以利用這種移動自組網路方便地交換信息,而不受攜帶型電腦附近沒有電話線插頭的限制。當出現各種自然災害(如地震、洪水、森林火災等)時,在搶險救災時利用移動自組網路進行及時的通信往往也是很有效的,因為這時事先已建好的固定網路基礎設施(基站)可能已經都被破壞了。
近年來,移動自組網路中的一個子集—無線感測器網路引起了人們廣泛的關注。無線感測器網路是由大量感測器節點通過無線通信技術構成的自組網路。無線感測器網路的套用就是進行各種數據的採集、處理和傳輸,一般並不需要很高的頻寬,但是在大部分時間必須保持低功耗,以節省電池的消耗。
無線感測器網路中的節點基本上是固定不變的,這點和移動自組網路有很大的區別。無線感測器網路的套用領域主要有以下方面。
① 環境監測與保護(如洪水預報、動物棲息的監控)。
② 戰爭中對敵情的偵查和對兵力、裝備、物資等的監控。
③ 醫療中對病房的監測和對患者的護理。
④ 在危險的工業環境(如礦井、核電站等)中的安全監測。
⑤ 城市交通管理、建築內的溫度/照明/安全控制等。
2.無線個人區域網(WPAN)
無線個人區域網(WPAN)就是在個人工作地方把屬於個人使用的電子設備(如攜帶型電腦、掌上電腦、攜帶型印表機以及蜂窩電話等)用無線技術連線起來自組網路,不需要使用接入點AP,整個網路的範圍為10m左右。WPAN可以是一個人使用,也可以是若干人共同使用。WPAN是以個人為中心來使用的無線個人區域網,它實際上就是一個低功率、小範圍、低速率和低價格的電纜替代技術。
3.無線城域網(WMAN)
我們已經有了多種有線寬頻接入網際網路的網路,然而人們發現,在許多情況下,使用無線寬頻接入可以帶來很多好處,如更加經濟和安裝快捷,同時也可以得到更高的數據率。近年來,無線城域網(WMAN)又成為無線網路中的一個熱點。WMAN可提供“最後一英里”的寬頻無線接入(固定的、移動的和便攜的)。許多情況下,WMAN可用來替代現有的有線寬頻接入,所以可稱無線本地環路。
認證協定
網路身份認證協定VIeID
全稱:(Virtual identity electronic identification) 通用賬戶協定,是俗稱的網路身份證。它是一種網際網路身份認證協定,其具有唯一性和信息不可否認性。其概念與OpenID相似,並具有開放、分散、自由等特性。
協定分層
為了減少網路設計的複雜性,絕大多數網路採用分層設計方法。所謂分層設計方法,就是按照信息的流動過程將網路的整體功能分解為一個個的功能層,不同機器上的同等功能層之間採用相同的協定,同一機器上的相鄰功能層之間通過接口進行信息傳遞。為了便於理解接口和協定的概念,我們首先以郵政通信系統為例進行說明。人們平常寫信時,都有個約定,這就是信件的格式和內容。首先,我們寫信時必須採用雙方都懂的語言文字和文體,開頭是對方稱謂,最後是落款等。這樣,對方收到信後,才可以看懂信中的內容,知道是誰寫的,什麼時候寫的等。當然還可以有其他的一些特殊約定,如書信的編號、間諜的密寫等。信寫好之後,必須將信封裝並交由郵局寄發,這樣寄信人和郵局之間也要有約定,這就是規定信封寫法並貼郵票。在中國寄信必須先寫收信人地址、姓名,然後才寫寄信人的地址和姓名。郵局收到信後,首先進行信件的分揀和分類,然後交付有關運輸部門進行運輸,如航空信交民航,平信交鐵路或公路運輸部門等。這時,郵局和運輸部門也有約定,如到站地點、時間、包裹形式等等。信件運送到目的地後進行相反的過程,最終將信件送到收信人手中,收信人依照約定的格式才能讀懂信件。如圖所示,在整個過程中,主要涉及到了三個子系統、即用戶子系統,郵政子系統和運輸子系統。各種約定都是為了達到將信件從一個源點送到某一個目的點這個目標而設計的,這就是說,它們是因信息的流動而產生的。可以將這些約定分為同等機構間的約定,如用戶之間的約定、郵政局之間的約定和運輸部門之間的約定,以及不同機構間的約定,如用戶與郵政局之間的約定、郵政局與運輸部門之間的約定。雖然兩個用戶、兩個郵政局、兩個運輸部門分處甲、乙兩地,但它們都分別對應同等機構,同屬一個子系統;而同處一地的不同機構則不在一個子系統內,而且它們之間的關係是服務與被服務的關係。很顯然,這兩種約定是不同的,前者為部門內部的約定,而後者是不同部門之間的約定。
在計算機網路環境中,兩台計算機中兩個進程之間進行通信的過程與郵政通信的過程十分相似。用戶進程對應於用戶,計算機中進行通信的進程(也可以是專門的通信處理機〕對應於郵局,通信設施對應於運輸部門。為了減少計算機網路設計的複雜性,人們往往按功能將計算機網路劃分為多個不同的功能層。網路中同等層之間的通信規則就是該層使用的協定,如有關第N層的通信規則的集合,就是第N層的協定。而同一計算機的不同功能層之間的通信規則稱為接口( i n t e r f a c e),在第N層和第(N+ 1)層之間的接口稱為N /(N+ 1)層接口。總的來說,協定是不同機器同等層之間的通信約定,而接口是同一機器相鄰層之間的通信約定。不同的網路,分層數量、各層的名稱和功能以及協定都各不相同。然而,在所有的網路中,每一層的目的都是向它的上一層提供一定的服務。協定層次化不同於程式設計中模組化的概念。在程式設計中,各模組可以相互獨立,任意拼裝或者並行,而層次則一定有上下之分,它是依數據流的流動而產生的。組成不同計算機同等層的實體稱為對等進程( peer process)。對等進程不一定非是相同的程式,但其功能必須完全一致,且採用相同的協定。分層設計方法將整個網路通信功能劃分為垂直的層次集合後,在通信過程中下層將向上層隱蔽下層的實現細節。但層次的劃分應首先確定層次的集合及每層應完成的任務。劃分時應按邏輯組合功能,並具有足夠的層次,以使每層小到易於處理。同時層次也不能太多,以免產生難以負擔的處理開銷。計算機網路體系結構是網路中分層模型以及各層功能的精確定義。對網路體系結構的描述必須包括足夠的信息,使實現者可以為每一功能層進行硬體設計或編寫程式,並使之符合相關協定。但我們要注意的是,網路協定實現的細節不屬於網路體系結構的內容,因為它們隱含在機器內部,對外部說來是不可見的。現在我們來考查一個具體的例子:在圖1 - 11所示的5層網路中如何向其最上層提供通信。在第5層運行的某套用進程產生了訊息M,並把它交給第4層進行傳送。第4層在訊息M前加上一個信息頭(h e a d e r),信息頭主要包括控制信息(如序號)以便目標機器上的第4層在低層不能保持訊息順序時,把亂序的訊息按原序裝配好。在有些層中,信息頭還包括長度、時間和其他控制欄位。在很多網路中,第4層對接收的訊息長度沒有限制,但在第3層通常存在一個限度。因此,第3層必須將接收的入境訊息分成較小的單元如報文分組( p a c k e t),並在每個報文分組前加上一個報頭。在本實例中,訊息M被分成兩部分:M 1和M 2。第3層確定使用哪一條輸出線路,並將報文傳給第2層。第2層不僅給每段訊息加上頭部信息,而且還要加上尾部信息,構成新的數據單元,通常稱為幀( f r a m e),然後將其傳給第1層進行物理傳輸。在接收方,報文每向上遞交一層,該層的報頭就被剝掉,決不可能出現帶有N層以下報頭的報文交給接收方第N層實體的情況。要理解圖1 - 11示意圖,關鍵要理解虛擬通信與物理通信之間的關係,以及協定與接口之間的區別。比如,第4層的對等進程,在概念上認為它們的通信是水平方向地套用第四層協定。每一方都好像有一個叫做“傳送到另一方去”的過程和一個叫做“從另一方接收”的過程,儘管實際上這些過程是跨過3 / 4層接口與下層通信而不是直接同另一方通信。抽象出對等進程這一概念,對網路設計是至關重要的。有了這種抽象技術,網路設計者就可以把設計完整的網路這種難以處理的大問題,劃分成設計幾個較小的且易於處理的問題,即分別設計各層。
常用網路
雖然我們所能看到的區域網路主要是以雙絞線為代表傳輸介質的乙太網,那只不過是我們所看到都基本上是企、事業單位的區域網路,在網路發展的早期或在其它各行各業中,因其行業特點所採用的區域網路也不一定都是乙太網,在區域網路中常見的有:乙太網(Ethernet)、令牌網(Token Ring)、FDDI網、異步傳輸模式網(ATM)等幾類,下面分別作一些簡要介紹。
乙太網
(EtherNet)
乙太網最早是由Xerox(施樂)公司創建的,在1980年由DEC、Intel和Xerox三家公司聯合開發為一個標準。乙太網是套用最為廣泛的區域網路,包括標準乙太網(10Mbps)、快速乙太網(100Mbps)、千兆乙太網(1000 Mbps)和10G乙太網,它們都符合IEEE802.3系列標準規範。
(1)標準乙太網
最開始乙太網只有10Mbps的吞吐量,它所使用的是CSMA/CD(帶有衝突檢測的載波偵聽多路訪問)的訪問控制方法,通常把這種最早期的10Mbps乙太網稱之為標準乙太網。乙太網主要有兩種傳輸介質,那就是雙絞線和同軸電纜。所有的乙太網都遵循IEEE 802.3標準,下面列出是IEEE 802.3的一些乙太網絡標準,在這些標準中前面的數字表示傳輸速度,單位是“Mbps”,最後的一個數字表示單段網線長度(基準單位是100m),Base表示“基帶”的意思,Broad代表“寬頻”。
·10Base-5 使用粗同軸電纜,最大網段長度為500m,基帶傳輸方法;
·10Base-2 使用細同軸電纜,最大網段長度為185m,基帶傳輸方法;
·10Base-T 使用雙絞線電纜,最大網段長度為100m;
·1Base-5 使用雙絞線電纜,最大網段長度為500m,傳輸速度為1Mbps;
·10Broad-36 使用同軸電纜(RG-59/U CATV),最大網段長度為3600m,是一種寬頻傳輸方式;
·10Base-F 使用光纖傳輸介質,傳輸速率為10Mbps;
(2)快速乙太網
(Fast Ethernet)
隨著網路的發展,傳統標準的乙太網技術已難以滿足日益增長的網路數據流量速度需求。在1993年10月以前,對於要求10Mbps以上數據流量的LAN套用,只有光纖分散式數據接口(FDDI)可供選擇,但它是一種價格非常昂貴的、基於100Mpbs光纜的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速乙太網集線器FastSwitch10/100和網路接口卡FastNIC100,快速乙太網技術正式得以套用。隨後Intel、SynOptics、3COM、BayNetworks等公司亦相繼推出自己的快速乙太網裝置。與此同時,IEEE802工程組亦對100Mbps乙太網的各種標準,如100BASE-TX、100BASE-T4、MII、中繼器、全雙工等標準進行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速乙太網標準(Fast Ethernet),就這樣開始了快速乙太網的時代。
快速乙太網與原來在100Mbps頻寬下工作的FDDI相比它具有許多的優點,最主要體現在快速乙太網技術可以有效的保障用戶在布線基礎實施上的投資,它支持3、4、5類雙絞線以及光纖的連線,能有效的利用現有的設施。
快速乙太網的不足其實也是乙太網技術的不足,那就是快速乙太網仍是基於載波偵聽多路訪問和衝突檢測(CSMA/CD)技術,當網路負載較重時,會造成效率的降低,當然這可以使用交換技術來彌補。
100Mbps快速乙太網標準又分為:100BASE-TX 、100BASE-FX、100BASE-T4三個子類。
·100BASE-TX:是一種使用5類數據級無禁止雙絞線或禁止雙絞線的快速乙太網技術。它使用兩對雙絞線,一對用於傳送,一對用於接收數據。在傳輸中使用4B/5B編碼方式,信號頻率為125MHz。符合EIA586的5類布線標準和IBM的SPT 1類布線標準。使用同10BASE-T相同的RJ-45連線器。它的最大網段長度為100米。它支持全雙工的數據傳輸。
·100BASE-FX:是一種使用光纜的快速乙太網技術,可使用單模和多模光纖(62.5和125um) 多模光纖連線的最大距離為550米。單模光纖連線的最大距離為3000米。在傳輸中使用4B/5B編碼方式,信號頻率為125MHz。它使用MIC/FDDI連線器、ST連線器或SC連線器。它的最大網段長度為150m、412m、2000m或更長至10公里,這與所使用的光纖類型和工作模式有關,它支持全雙工的數據傳輸。100BASE-FX特別適合於有電氣干擾的環境、較大距離連線、或高保密環境等情況下的適用。
·100BASE-T4:是一種可使用3、4、5類無禁止雙絞線或禁止雙絞線的快速乙太網技術。它使用4對雙絞線,3對用於傳送數據,1對用於檢測衝突信號。在傳輸中使用8B/6T編碼方式,信號頻率為25MHz,符合EIA586結構化布線標準。它使用與10BASE-T相同的RJ-45連線器,最大網段長度為100米。
(3)千兆乙太網
(GB Ethernet)
隨著乙太網技術的深入套用和發展,企業用戶對網路連線速度的要求越來越高,1995年11月,IEEE802.3工作組委任了一個高速研究組(HigherSpeedStudy Group),研究將快速乙太網速度增至更高。該研究組研究了將快速乙太網速度增至1000Mbps的可行性和方法。1996年6月,IEEE標準委員會批准了千兆位乙太網方案授權申請(Gigabit Ethernet Project Authorization Request)。隨後IEEE802.3工作組成立了802.3z工作委員會。IEEE802.3z委員會的目的是建立千兆位乙太網標準:包括在1000Mbps通信速率的情況下的全雙工和半雙工操作、802.3乙太網幀格式、載波偵聽多路訪問和衝突檢測(CSMA/CD)技術、在一個衝突域中支持一個中繼器(Repeater)、10BASE-T和100BASE-T向下兼容技術千兆位乙太網具有乙太網的易移植、易管理特性。千兆乙太網在處理新套用和新數據類型方面具有靈活性,它是在贏得了巨大成功的10Mbps和100Mbps IEEE802.3乙太網標準的基礎上的延伸,提供了1000Mbps的數據頻寬。這使得千兆位乙太網成為高速、寬頻網路套用的戰略性選擇。
1000Mbps千兆乙太網主要有以下三種技術版本:1000BASE-SX,-LX和-CX版本。1000BASE-SX 系列採用低成本短波的CD(compact disc,光碟雷射器) 或者VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔體表面發光雷射器)傳送器;而1000BASE-LX系列則使用相對昂貴的長波雷射器;1000BASE-CX系列則打算在配線間使用短跳線電纜把高性能伺服器和高速外圍設備連線起來。
(4)10G乙太網
10Gbps的乙太網標準已經由IEEE 802.3工作組於2000年正式制定,10G乙太網仍使用與以往10Mbps和100Mbps乙太網相同的形式,它允許直接升級到高速網路。同樣使用IEEE 802.3標準的幀格式、全雙工業務和流量控制方式。在半雙工方式下,10G乙太網使用基本的CSMA/CD訪問方式來解決共享介質的衝突問題。此外,10G乙太網使用由IEEE 802.3小組定義了和乙太網相同的管理對象。總之,10G乙太網仍然是乙太網,只不過更快。但由於10G乙太網技術的複雜性及原來傳輸介質的兼容性問題(只能在光纖上傳輸,與原來企業常用的雙絞線不兼容了),還有這類設備造價太高(一般為2 ̄9萬美元),所以這類乙太網技術還處於研發的初級階段,還沒有得到實質套用。
令牌環網
令牌環網是IBM公司於20世紀70年代發展的,這種網路比較少見。在老式的令牌環網中,數據傳輸速度為4Mbps或16Mbps,新型的快速令牌環網速度可達100Mbps。令牌環網的傳輸方法在物理上採用了星形拓撲結構,但邏輯上仍是環形拓撲結構。結點間採用多站訪問部件(Multistation Access Unit,MAU)連線在一起。MAU是一種專業化集線器,它是用來圍繞工作站計算機的環路進行傳輸。由於數據包看起來像在環中傳輸,所以在工作站和MAU中沒有終結器。
在這種網路中,有一種專門的幀稱為“令牌”,在環路上持續地傳輸來確定一個結點何時可以傳送包。令牌為24位長,有3個8位的域,分別是首定界符(Start Delimiter,SD)、訪問控制(Access Control,AC)和終定界符(End Delimiter,ED)。首定界符是一種與眾不同的信號模式,作為一種非數據信號表現出來,用途是防止它被解釋成其它東西。這種獨特的8位組合只能被識別為幀首標識符(SOF)。由於乙太網技術發展迅速,令牌網存在固有缺點,令牌在整個計算機區域網路已不多見,原來提供令牌網設備的廠商多數也退出了市場,所以在區域網路市場中令牌網可以說是“昨日黃花”了。
FDDI網
(Fiber Distributed Data Interface)
FDDI的英文全稱為“Fiber Distributed Data Interface”,中文名為“光纖分散式數據接口”,它是於80年代中期發展起來一項區域網路技術,它提供的高速數據通信能力要高於當時的乙太網(10Mbps)和令牌網(4或16Mbps)的能力。FDDI標準由ANSI X3T9.5標準委員會制訂,為繁忙網路上的高容量輸入輸出提供了一種訪問方法。FDDI技術同IBM的Tokenring技術相似,並具有LAN和Tokenring所缺乏的管理、控制和可靠性措施,FDDI支持長達2KM的多模光纖。FDDI網路的主要缺點是價格同前面所介紹的“快速乙太網”相比貴許多,且因為它只支持光纜和5類電纜,所以使用環境受到限制、從乙太網升級更是面臨大量移植問題。
當數據以100Mbps的速度輸入輸出時,在當時FDDI與10Mbps的乙太網和令牌環網相比性能有相當大的改進。但是隨著快速乙太網和千兆乙太網技術的發展,用FDDI的人就越來越少了。因為FDDI使用的通信介質是光纖,這一點它比快速乙太網及100Mbps令牌網傳輸介質要貴許多,然而FDDI最常見的套用只是提供對網路伺服器的快速訪問,所以在FDDI技術並沒有得到充分的認可和廣泛的套用。
FDDI的訪問方法與令牌環網的訪問方法類似,在網路通信中均採用“令牌”傳遞。它與標準的令牌環又有所不同,主要在於FDDI使用定時的令牌訪問方法。FDDI令牌沿網路環路從一個結點向另一個結點移動,如果某結點不需要傳輸數據,FDDI將獲取令牌並將其傳送到下一個結點中。如果處理令牌的結點需要傳輸,那么在指定的稱為“目標令牌循環時間”(Target Token Rotation Time,TTRT)的時間內,它可以按照用戶的需求來傳送儘可能多的幀。因為FDDI採用的是定時的令牌方法,所以在給定時間中,來自多個結點的多個幀可能都在網路上,以為用戶提供高容量的通信。
FDDI可以傳送兩種類型的包:同步的和異步的。同步通信用於要求連續進行且對時間敏感的傳輸(如音頻、視頻和多媒體通信);異步通信用於不要求連續脈衝串的普通的數據傳輸。在給定的網路中,TTRT等於某結點同步傳輸需要的總時間加上最大的幀在網路上沿環路進行傳輸的時間。FDDI使用兩條環路,所以當其中一條出現故障時,數據可以從另一條環路上到達目的地。連線到FDDI的結點主要有兩類,即A類和B類。A類結點與兩個環路都有連線,由網路設備如集線器等組成,並具備重新配置環路結構以在網路崩潰時使用單個環路的能力;B類結點通過A類結點的設備連線在FDDI網路上,B類結點包括伺服器或工作站等。
ATM網
ATM的英文全稱為“asynchronous transfer mode”,中文名為“異步傳輸模式”,它的開發始於70年代後期。ATM是一種較新型的單元交換技術,同乙太網、令牌環網、FDDI網路等使用可變長度包技術不同,ATM使用53位元組固定長度的單元進行交換。它是一種交換技術,它沒有共享介質或包傳遞帶來的延時,非常適合音頻和視頻數據的傳輸。ATM主要具有以下優點:
1.ATM使用相同的數據單元,可實現廣域網和區域網路的無縫連線。
2.ATM支持VLAN(虛擬區域網路)功能,可以對網路進行靈活的管理和配置。
3.ATM具有不同的速率,分別為25、51、155、622Mbps,從而為不同的套用提供不同的速率。
ATM是採用“信元交換”來替代“包交換”進行實驗,發現信元交換的速度是非常快的。信元交換將一個簡短的指示器稱為虛擬通道標識符,並將其放在TDM時間片的開始。這使得設備能夠將它的比特流異步地放在一個ATM通信通道上,使得通信變得能夠預知且持續的,這樣就為時間敏感的通信提供了一個預QoS,這種方式主要用在視頻和音頻上。通信可以預知的另一個原因是ATM採用的是固定的信元尺寸。ATM通道是虛擬的電路,並且MAN傳輸速度能夠達到10Gbps。
無線區域網路
(Wireless Local Area Network;WLAN)
無線區域網路是目前最新,也是最為熱門的一種區域網路,特別是自Intel推出首款自帶無線網路模組的迅馳筆記本處理器以來。無線區域網路與傳統的區域網路主要不同之處就是傳輸介質不同,傳統區域網路都是通過有形的傳輸介質進行連線的,如同軸電纜、雙絞線和光纖等,而無線區域網路則是採用空氣作為傳輸介質的。正因為它擺脫了有形傳輸介質的束縛,所以這種區域網路的最大特點就是自由,只要在網路的覆蓋範圍內,可以在任何一個地方與伺服器及其它工作站連線,而不需要重新鋪設電纜。這一特點非常適合那些移動辦公一簇,有時在機場、賓館、酒店等(通常把這些地方稱為“熱點”),只要無線網路能夠覆蓋到,它都可以隨時隨地連線上無線網路,甚至Internet。
無線區域網路所採用的是802.11系列標準,它也是由IEEE 802標準委員會制定的。這一系列主要有4個標準,分別為:802.11b(ISM 2.4GHz)、802.11a(5GHz)、802.11g(ISM 2.4GHz) 和802.11z,前三個標準都是針對傳輸速度進行的改進,最開始推出的是802.11b,它的傳輸速度為11MB/s,因為它的連線速度比較低,隨後推出了802.11a標準,它的連線速度可達54MB/s。但由於兩者不互相兼容,致使一些早已購買802.11b標準的無線網路設備在新的802.11a網路中不能用,所以在正式推出了兼容802.11b與802.11a兩種標準的802.11g,這樣原有的802.11b和802.11a兩種標準的設備都可以在同一網路中使用。802.11z是一種專門為了加強無線區域網路安全的標準。因為無線區域網路的“無線”特點,致使任何進入此網路覆蓋區的用戶都可以輕鬆以臨時用戶身份進入網路,給網路帶來了極大的不安全因素(常見的安全漏洞有:SSID廣播、數據以明文傳輸及未採取任何認證或加密措施等)。為此802.11z標準專門就無線網路的安全性方面作了明確規定,加強了用戶身份認證制度,並對傳輸的數據進行加密。所使用的方法/算法有:WEP(RC4-128預共享密鑰,WPA/WPA2(802.11 RADIUS集中式身份認證,使用TKIP與/或AES加密算法)與WPA(預共享密鑰)
劃分方式
一,根據網路的覆蓋範圍與規模
1,區域網路
2,城域網
3,廣域網
二,按傳輸介質劃分
1,有線網:指採用雙絞線來連線的計算機網路。
2,光纖網:採用光導纖維作為傳輸介質。
3,無線網:採用一種電磁波作為載體來實現數據傳輸的網路類型。
三,按數據交換方式劃分
1,電路交換網
2,報文交換網
3,分組交換網
四,按通信方式劃分
1,廣播式傳輸網路
2,點到點式傳輸網路
五,按服務方式劃分
1,客戶機,伺服器網路
2,對等網
相關套用
21世紀人類將全面進入資訊時代。資訊時代的重要特徵就是數位化、網路化和信息化。要實現信息化就必須依靠完善的網路,因為網路可以非常迅速地傳遞信息。因此網路現在已經成為信息社會的命脈和發展知識經濟的重要基礎。網路對社會生活的很多方面以及對社會經濟的發展已經產生了不可估量的影響。
這裡所說的網路是指“三網”,即電信網路、有線電視網路和計算機網路。這三種網路向用戶提供的服務不同。電信網路的用戶可得到電話、電報以及傳真等服務;有線電視網路的用戶能夠觀看各種電視節目;計算機網路則可使用戶能夠迅速傳送數據檔案,以及從網路上查找並獲取各種有用資料,包括圖像和視頻檔案。這三種網路在信息化過程中都起到十分重要的作用,但其中發展最快的並起到核心作用的是計算機網路。隨著技術的發展,電信網路和有線電視網路都逐漸融入了現代計算機網路(也稱計算機通信網)的技術,這就產生了“網路融合”的概念。
自從20世紀90年代以後,以網際網路(Internet)為代表的計算機網路得到了飛速的發展,已從最初的教育科研網路逐步發展成為商業網路,並已成為僅次於全球電話網的世界第二大網路。網際網路正在改變著我們工作和生活的各個方面,它已經給很多國家帶來了巨大的好處,並加速了全球信息革命的進程。網際網路是人類自印刷術發明以來在通信方面最大的變革。現在,人們的生活、工作、學習和交往都已離不開網際網路了。
計算機網路向用戶提供的最重要的功能有兩個,即連通性和共享。
為什麼會建立這么多的計算機網路,主要還是因為計算機網路的運用受到個人和公司的青睞。
一、商業運用。
1、主要是實現資源共享(resource sharing)最終打破地理位置束縛(tyranny of geography),主要運用客戶-伺服器模型(client-server model)。
2、提供強大的通信媒介(communication medium)。如:電子郵件(E-mail)、視頻會議。
3、電子商務活動。如:各種不同供應商購買子系統,然後在將這些部件組裝起來。
4、通過Internet與客戶做各種交易。如:書店、音像在家裡購買商品或者服務。
二、家庭運用
1、訪問遠程信息。如:瀏覽Web頁面獲得藝術、商務、烹飪、政府、健康、歷史、愛好、娛樂、科學、運動、旅遊等等信息。
2、個人之間的通信。如:即時訊息(instant messaging)運用 、聊天室、對等通信(peer-to-communication)。
3、互動式娛樂。如:視頻點播、即時評論及參加活動、網路遊戲。
4、廣義的電子商務。如:電子方式支付賬單、管理銀行賬戶、處理投資。
三、移動用戶
以無線網路為基礎。
1、可移動的計算機:筆記本計算機、PDA、3G手機。
2、軍事:一場戰爭不可能靠區域網路設備通信。
3、運貨車隊、計程車、快遞專車等套用。
四、社會問題
網路的廣泛運用已經導致了新的社會、倫理和政治問題。