歷史
科隆大學的H. Frenzel 和 H. Schultes於1934年在研究聲納時首次觀察到聲光現象。在其實驗過程中兩人慾加快相片顯影的過程,將一座超音波轉換器置入注滿顯影劑的水槽中。事後卻在顯影后的底片上觀察到一些微小的亮點,同時每當超音波開啟時,液體中的氣泡便會釋放出光來。早年的實驗中由於水下環境過於複雜,對於這些大量壽命極短暫的氣泡難以做進一步的原理分析。此現象在現代通常也被稱為多氣泡聲光現象。
而Felipe Gaitan 和 Lawrence Crum在50多年後的1989年改進了實驗裝置與技術,發現了單氣泡聲光現象。在單氣泡聲光現象中,一顆被限制在駐波中的氣泡會隨著自身周期性的被壓縮而不斷放出光來。由於這項實驗技術將原本複雜的多氣泡模型簡化為單一穩定氣泡的效應,故有助於更系統性地分析聲光效應的原理。研究人員同時也發現氣泡內部的溫度竟然高到可以溶解鐵的程度。根據估計與假設,氣泡內的溫度可以高達攝氏100萬度,這也重新喚起了人們對聲光現象的好奇與興趣。雖然如此高的溫度尚未被確實證明,但近年來由伊利諾大學香檳分校主導的實驗顯示,氣泡內的溫度大約在20000K左右。
特性
當一道足夠強度的聲波射入液體內的一小塊空腔時,會導致空腔急速的壓縮,這個空腔可能是普通的氣泡,或是因氣穴現象引發的微小的低壓氣泡。由於聲光現象可以在實驗室中穩定地被呈現,產生出來的單一顆氣泡會在被壓縮和向外擴展的周期中,不斷放出光來。為了達到這個結果,首先在液體中製造出一駐波,且氣泡必須要置於駐波的腹點處,使其能受到最大的波幅震盪。其共振的頻率取決於容納氣泡容器的形狀與大小。
一些在聲光現象實驗中觀察到的事實:
氣泡釋放出來的光芒持續時間相當短暫──大約在35至幾百皮秒之間,光強大約在1~10 mW左右。
當氣泡放光時尺寸是非常小的。其直徑大約只有1μm,而其能放出光的氣泡大小取決於周圍液體的種類(例如水)以及氣泡中氣體的種類(例如一般空氣)。
在單氣泡聲光現象中放出的光,其周期和位置都是相當穩定的。更有趣的是,雖然經過分析這些氣泡會受到例如柏克尼斯力或經歷瑞利-泰勒不穩定性等作用,導致氣泡會經歷顯著的幾何結構不穩定過程,但事實上我們觀察到這些氣泡放出光的頻率,卻能比當初產生聲波的儀器的震盪頻率還要穩定!
如果在氣泡中加入惰性氣體,例如氦、氬或氙等氣體,能進一步加強放出光的強度。
聲光現象中放出光的波長是相當短的,其譜線可以到達接近紫外光的程度。由於短波長的光擁有較高的能量,經過計算,若欲產生如此高能量的光,氣泡中環境的溫度大約要落在20000~1000000K之間。但這種估計忽略了一項事實,即是水會吸收幾乎所有波長低於200nm的電磁波,這項事實也加深了正確估計氣泡內確切溫度的困難,因為這些估計都是建立在氣泡被壓縮過程中的發射光譜上,或是利用Rayleigh-Plesset方程所得到的。甚至有人估計氣泡內的溫度可以達到109 K,即有十億度之高,但這些看來有些誇大的估計皆建立於現階段尚未證實的模型以及太多無法確定的假設上。
另外有兩位化學家David J. Flannigan和Kenneth S. Suslick於2005年在<自然>上發表了一篇論文。他們實驗的對象是硫酸里的氬氣泡,打入聲波後在容器內發現O2+離子、一氧化硫、以及位於激發態的氬原子。這代表氣泡中心有著一個熱電漿核。他們指出O2+離子的激發能量和游離能是18eV左右,不可能是因為單純加熱而達到的。兩位化學家認為這應該是從氣泡中心的不透明電漿釋放出來的高能電子撞擊得來的。
關於氣泡核融合的爭議
最讓人感興趣的是,既然氣泡內部可能處於如此高溫下,我們甚至有可能利用聲光現象作為達到核融合臨界溫度的方法。如果氣泡內的溫度和壓力都夠高的話,在太陽和其他大型星體中發生的核融合效應可以在如此微小的氣泡中發生。這種可能通常也被稱為氣泡核融合。
2002年3月8日,在美國橡樹嶺國家實驗室工作的一名科學家Rusi P. Taleyarkhan利用極強的超音波震盪轟擊全部由氘組成的丙酮,並在容器旁放上中子源以產生更大的氣泡,Taleyarkhan宣稱他觀察到容器中氚含量的上升,代表引發了核融合效應。他在2003年前往普渡大學任教,並繼續發表有關實驗過程的論文。不幸的是,在Taleyarkhan之後沒有其他研究團體能成功地複製他的實驗結果。在2006年6月,伊利諾大學香檳分校的Dr. Kenneth S. Suslick在一封寫給普渡大學的電子信件中表示,他質疑Taleyarkhan宣稱的研究成果已經構成一項科學不端行為。Suslick並聲明在這之後他沒有收到任何普渡大學的回信。
但在2006年11月,據說Taleyarkhan的實驗被來自美國拉特諾大學的Edward R. Forringer再次驗證了──不過是在Taleyarkhan自己的普渡大學實驗室里。但這時普渡大學卻選擇不繼續深入調查,縱使有許多普渡大學的其他教授也提出對這項發現的質疑。美國《高等教育紀事報》也注意到了一些問題:“在這段時間中,Taleyarkhan先生宣稱有兩組以上的科學家來到他的實驗室,並成功的驗證了氣泡核融合效應,Taleyarkhan先生並強調這兩組研究人員都是專家,而且絕對獨立於他本身的立場。但在對兩組研究人員的訪問中,他們都駁斥了Taleyarkhan先生的這項說法。例如拉特諾大學的物理教授Edward R. Forringer便聲明他自己事實上並不是一位專家,儘管如此,他‘還是相信他的實驗結果的確能夠支持氣泡核融合的理論……’。”。
更精彩的還在後頭,在隔年的2007年,美國國會的專案小組計畫使用聯邦基金來重現Taleyarkhan的實驗結果,在他們的堅持下,普渡大學只好在2007年5月10日宣布他們將至少增加一組與普渡大學無關的研究人員來研究Taleyarkhan的實驗。對於Taleyarkhan當初宣稱他的實驗已經“獨立地被他人驗證”,專案小組採取“高度懷疑”的態度,並且批評普渡大學使用三位之前已經調查過Taleyarkhan的人員現在再來做再審的動作。Taleyarkhan本人對於專案小組的這項報告表示是“偏頗且過度被誇大”的,但最終還是答應與專案小組合作。2007年9月10日,普渡大學內部的調查委員會決定“某些情事值得做進一步的探討”,因此所有研究將從頭開始驗證起,如今物理學界普遍質疑Taleyarkhan的研究成果。
2006年1月27日,美國倫斯勒理工學院的研究員也宣稱他們在沒有其他外加中子源的情形下,利用聲光現象製造出核融合反應,並發表論文於著名的《物理評論快報》上。但至目前為止,這個實驗尚未被任何科學機構的實驗小組重現。
理論
流體力學方程式
氣泡的運動方程式可以由Rayleigh-Plesset方程式近似求得
其中 R是氣泡的半徑,η是黏滯係數,γ是表面張力,Pg是氣泡內氣體的壓力,Pa是聲音的壓力,P0是環境的壓力。
雖然這是簡化後的方程式,但仍然可以很好的描述被聲音震動的氣泡的行為。
對現象的解釋
到現在為止,造成聲光效應的實際機制仍然沒有被解決。目前用來解釋的理論有:熱點、制動輻射、碰撞發光、環形放電、非古典光學、穿隧效應、電動力學發光、摩擦發光等等。
M. Brenner、S. Hilgenfeldt,和D. Lohse在2002年出版了一本60頁的報告,其中對於聲光現象的機製做了詳盡的討論。根據他們所發表的理論,最重要的關鍵在於氣泡中含有少量的惰性氣體例如氬或氙(地球大氣有含有大約1%的氬氣,但其溶解在水中的量對於產生聲光現象來說卻是過多了,理想的狀態是減少成原來的20~40%)以及含量不固定的水蒸氣。經過連鎖的化學反應後會導致氣泡中的氮氣和氧氣在大約100個氣泡膨脹-壓縮周期後被移除,此時氣泡便會開始發光。當氣泡收縮的時候,周圍的水會向氣泡中心擠壓,因為慣性的關係而在短時間內對氣泡產生一個相當大的壓力,由此造成的絕熱壓縮會把氣泡內部加熱到大概 10000 K。在如此高溫的狀況下,不影響透明度的一小部分惰性氣體會被游離,被游離出來的電子與氣體原子互相影響產生制動輻射。當壓力與溫度下降後,游離的電子重新與原子結合,停止發光。這個機制導致一個長約 160 皮秒、有規律的短暫發光。
根據上述這個理論計算出來所放出光的強度和持續時間,大致上能和實驗結果符合,其誤差也不會比做一些簡化假設(例如假設氣泡各部份的溫度保持相同)來得大很多。因此雖然還有一些細節尚待探討,聲光現象的原理大體上來已經被解決了。
天外飛來的想法
有個較受到大家注目、同時相對來說也比較不尋常解釋聲光現象的理論是由英國薩塞克斯大學的Claudia Eberlein在1996年所提出的喀希米爾效應理論。Eberlein認為聲光現象中觀察到的光是由氣泡周圍的真空,透過類似霍金輻射的機制所產生的。根據量子力學,在真空中會自然的產生許多的粒子和反粒子對,並且在很短的時間內湮滅,而由於氣泡外液體和氣體的介面快速移動的關係,會將這些虛粒子轉變成實質的粒子。這種現象和喀希米爾效應或盎魯效應有一定的關係。如果此理論為真,那么聲光現象將是第一個量子真空零點輻射的直接觀察證據。然而,卻有人質疑上述量子效應並不會發生在聲光現象這種相對來說較長的時間尺度上,因為聲光現象看來比較遵守古典的氣穴效應壓縮。因此雖然想法十分有趣,喀希米爾模型目前為止只能被當作許多候補理論的其中之一。
生物界的聲光現象
卡搭蝦是一種能製造出聲光現象的生物。當槍蝦獵食時,會將它的巨螯快速合上,噴射出一道時速高達約每小時100公里的水流,這道高速水流會觸發氣穴現象,而成形一個極微小的低壓氣泡。氣泡所放出光的強度要比傳統聲光現象產生的光來得弱,用肉眼並沒有辦法看見。在生物學上此現象並沒有任何重要性,也僅僅不過是卡搭蝦用來擊暈獵物的衝擊波副產物而已。但在物理上,卻是第一個生物利用聲光現象來發光的例子,因此在2001年10月發現這個現象時,也半戲謔性的將其稱為為"shrimpoluminescence"。科學家們在此之後隨即發現另一種叫做蝦蛄的蝦類,有某些品種其棍棒狀的前肢能急速來回揮動引發氣穴效應,進而能產生聲光現象。
外部連結
[1] 生活網
[2] 燒荒網