洞穿高考:數學解答題核心考點2012

洞穿高考:數學解答題核心考點2012

權威預測題參考答案(17) 權威預測題參考答案(51) 權威預測題參考答案(71)

基本信息

作者:張

洞穿高考:數學解答題核心考點洞穿高考:數學解答題核心考點
永輝
出版社: 航空工業出版社
出版:2012年2月8日
平裝: 280頁
正文語種: 簡體中文
開本: 16
ISBN: 9787802436862

內容簡介

《洞穿高考:數學解答題核心考點》為快速提高高考考生解決解答題的解題水平和技巧而編寫的應試用書,從歷年的高考真題和重要的書刊資料中篩選核心題型,歸納並總結各種題型的解題方法和技巧,讓考生一眼就能“秒殺”高考解答題,達到口述解答題的從容境界。《洞穿高考:數學解答題核心考點》適合高考數學命題與考試研究者、高中數學教師、高中學生及數學愛好者參考使用。

編輯推薦

《洞穿高考:數學解答題核心考點》編輯推薦:1.內容系統、全面。《洞穿高考:數學解答題核心考點》系統介紹了高考數學解答題的六大板塊:三角函式、立體幾何、機率統計、函式與導數、解析幾何和數列與不等式的命題規律和解題方法,研究並挖掘出重要模型,“秒殺”高考解答題,達到口述解答題的從容境界。
2.解法快捷。《洞穿高考:數學解答題核心考點》針對各種題型均總結出解題方法、規律和技巧(如數列與不等式中經典不等式的套用,獨特的解題方法會令讀者有耳目一新的感覺),這是本書的精華之一。編者以實用性、針對性和高效性為原則,讓讀者掌握解題規律和方法,可以舉一反三、觸類旁通,大大提高解題能力。
3.精選典例。《洞穿高考:數學解答題核心考點》所選例題是以近六年的高考數學真題和模擬題為素材,通過分析、歸納、遴選出高考解答題的六大板塊的核心考點(題型),極具典型性和代表性,例題的解答以題型所總結出的思路提示的解題方法和規律為指導,體現通解通法,考生可從中體會該題型的解題方法,豐富解題經驗。
4.針對性強。《洞穿高考:數學解答題核心考點》各章節除了有“核心考點和思路提示”外,還精心研發了“核心預測題”,將近幾年高考試題和模擬題中的相關問題收集整理提供給讀者,以求快速掌握高考命題思路和解題方法。隨書還贈送一本單獨成冊的核心預測題參考答案,方便學校教學使用。
5.超值的增值服務。在高考之前,《洞穿高考:數學解答題核心考點》的讀者可以獲得針對本省區的三套密押數學模擬試卷,非常給力。

作者簡介

張永輝,著名高考數學研究與教學專家、數學奧林匹克優秀教練,具有紮實的理論基礎和豐富的教學經驗,發表數篇數學論文。對歷年高考數學命題有深入研究,準確把握高考數學的命題脈絡,和思路,開創了“題型+模型”的全新型教法,通過對題型的深度把握,培養學生的數學思維,讓學生準確快速地找到解題途徑,獲得駕馭數學的能力。
張永輝老師研發出版了《高考數學單選題、填空題解題方法與技巧》、《新編中學數學解題方法全書》、《高考數學核心題型解題方法與技巧》多部作品,深受廣大高考學生推崇。

目錄

第一章三角函式(1)
核心考點一三角函式的圖像和性質(1)
核心考點二解三角形(5)
變式題參考答案(7)
三角函式權威預測題(15)
權威預測題參考答案(17)
第二章立體幾何(22)
核心考點一證明空間中平行與垂直的位置關係(22)
核心考點二空間角及空間距離的計算(29)
變式題參考答案(35)
立體幾何權威預測題(47)
權威預測題參考答案(51)
第三章機率統計(61)
核心考點一離散型隨機變數的分布列及期望(61)
核心考點二數據抽樣和分析——頻率分布直方圖的製作和分析(64)
變式題參考答案(65)
機率統計權威預測題(68)
權威預測題參考答案(71)
第四章函式與導數(77)
核心考點一討論參變數求解單調區間、極值(77)
核心考點二已知區間單調或不單調,求解參變數的範圍(78)
核心考點三零點問題(79)
核心考點四不等式恆成立問題(80)
核心考點五利用導數證明不等式(82)
變式題參考答案(85)
函式與導數權威預測題(99)
權威預測題參考答案(101)
第五章解析幾何(110)
核心考點一求動點的軌跡方程(110)
核心考點二平面向量在解析幾何中的套用(118)
核心考點三定點、定值、最值問值(125)
變式題參考答案(134)
解析幾何權威預測題(158)
權威預測題參考答案(160)
洞穿高考數學解答題核心考點
第六章數列與不等式(170)
核心考點一等差數列與等比數列的綜合(170)
核心考點二數列通項公式的求解(173)
核心考點三數列的求和(181)
核心考點四數列與不等式的綜合(185)
變式題參考答案(193)
數列與不等式權威預測題(216)
權威預測題參考答案(219)
附錄(231)
歷年高考理科試卷中三角函式部分解答題試題考點(231)
歷年高考理科試卷中立體幾何部分解答題試題考點(233)
歷年高考理科試卷中機率統計部分解答題試題考點(235)
歷年高考理科試卷中函式與導數部分解答題試題考點(237)
歷年高考理科試卷中解析幾何部分解答題試題考點(240)
歷年高考理科試卷中數列與不等式部分解答題試題考點(242)

高考數學答題技巧

方法一、調理大腦思緒,提前進入數學情境
考前要摒棄雜念,排除干擾思緒,使大腦處於“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態準備應考。
方法二、“內緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯繫,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
方法三、沉著應戰,確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
方法四、“六先六後”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六後”的戰術原則。
1.先易後難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。
3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同後異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力。
4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前儘快解決,從而為解決大題贏得時間,創造一個寬鬆的心理基礎。
5.先點後面。近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題準備了思維基礎和解題條件,所以要步步為營,由點到面。
6.先高后低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可儘量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鐘時間內完成大小26個題,時間很緊張,不允許做大量細緻的解後檢驗,所以要儘量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩紮穩打,層層有據,步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法七、講求規範書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規範。會而不對,令人惋惜;對而不全,得分不高;表述不規範、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。

方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。
對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。
如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設套用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。
解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。
若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

方法九、以退求進,立足特殊,發散一般
對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。
方法十、執果索因,逆向思考,正難則反
對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。
方法十一、迴避結論的肯定與否定,解決探索性問題
對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。
方法十二、套用性問題思路:面—點—線
解決套用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數據,此為“點”;綜合聯繫,提煉關係,依靠數學方法,建立數學模型,此為“線”,如此將套用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。

相關詞條

熱門詞條

聯絡我們