正文
原動系 儲存和傳遞工作能量的機構。分為重錘原動系和彈簧原動系兩類。重錘原動系 利用重錘的重力作能源。多用於簡易掛鍾(圖2 )和落地擺鐘。重錘原動繫結構簡單,力矩穩定,但當上升重錘時,傳動系與原動系脫開,鐘錶機構停止工作。 彈簧原動系 利用捲成螺線形的帶簧(發條)恢復變形所放出的能量作能源。帶簧一端與軸連線,另一端與一個不動的零件或發條盒的殼體連線。彈簧原動系用作攜帶式鐘錶的能源,也用於擺鐘上。彈簧原動系有帶固定條盒式、不帶條盒式和帶活動條盒式等3種類型。
傳動系 將原動系的能量傳給擒縱調速系的一組傳動齒輪。通常由一系列輪片和齒軸組成(圖3),在主傳動中輪片是主動齒輪,齒軸是從動齒輪。傳動比按照以下公式進行計算:
i=Z1/Z2
式中Z1為主動齒輪齒數,Z2為從動齒輪齒數。對於有秒針裝置的鐘表,其中心輪的輪片到秒輪的齒軸的傳動比必須等於60。鐘錶傳動系的齒形絕大多數是專門設計的(見鐘錶齒形)。
傳動系可按“二輪”(時輪和分輪)在表機芯的平面配置分為兩類:①中心二輪式,二輪在表機芯的中央。它又包括直接傳動式、秒簧式、短秒針和無秒針式、雙三輪式。②偏二輪式,二輪不在表機芯中央。它又包括頭輪傳出式、二輪傳出式、三輪傳出式。
直接傳動式是經常採用的傳動系之一(圖3)。在這種傳動方式中,分輪上部有一凹槽,分輪依靠摩擦與中心輪管相配合;走針機構的運動由中心輪來帶動。 擒縱調速系 由擒縱機構和振動系統構成。按振動系統的特點可分為兩類:①有固有振動周期擒縱調速系。它具有可以獨立進行振動的、有穩定周期的振動系統。手錶、鬧鐘中的走時系統的擒縱調速系屬於此類。②無固有振動周期擒縱調速系(圖4 )。它沒有能夠獨立進行振動的振動系統。這種調速系中的所謂振動系統的往復振動,完全依靠擒縱機構的往復運動。機械鬧鐘中的鬧時系統的擒縱調速系屬於此類。這種調速系精度要求不高,結構簡單,工作可靠,抗外界干擾能力強,在機械式定時器和鐘錶引信中大量採用。 擒縱機構 聯繫傳動系和振動系統的一種機構。其作用是把原動系的能量傳遞給振動系統,以維持振動系統的等幅振動;並把振動系統的振動次數傳給指針機構,達到計量時間之目的。擒縱機構種類很多,按其與振動系統聯繫的程度可分為兩類。①非自由式擒縱機構:擒縱機構和振動系統經常保持運動上的聯繫。它包括直進式、後退式和工字輪式擒縱機構等。②自由式擒縱機構:只有在釋放和傳沖階段,擒縱機構和振動系統才保持運動上的聯繫,其余階段振動系統處於自由運動狀態。它包括有銷釘式、叉瓦式和天文鐘式擒縱機構等。
①後退式擒縱機構(圖5):廣泛用於低精度擺鐘。它的叉瓦鎖面和沖面是同一平面(工作面);進瓦的工作面是一圓柱面,其圓心與擒縱叉的轉動中心不重合;出瓦的工作面是一平面。叉瓦和擒縱叉作成一體。傳沖後,叉瓦工作面將迫使擒縱輪後退一個角度。 ②叉瓦式擒縱機構(圖6):套用最廣的擒縱機構之一。工作時,擒縱輪由傳動系取得能量,通過擒縱輪齒和叉瓦(進瓦或出瓦)的作用轉變為衝量傳送給擒縱叉;通過擒縱叉的叉口和雙圓盤的衝擊圓盤上的擺釘的相互作用,再將衝量傳給振動系統。雙圓盤的保險圓盤和叉頭釘,擺釘和擒縱叉的喇叭口是保證機構正常工作的保險裝置。 ③銷釘式擒縱機構(圖7):與叉瓦式擒縱機構的不同之處是,在擒縱叉上用兩根圓柱銷釘代替叉瓦,衝量只沿擒縱輪齒沖面傳遞。這種擒縱機構結構簡單,精度要求低,製造方便,多在鬧鐘和低精度表中採用,俗稱粗馬結構。 振動系統 作為時間基準的機構。振動系統的振動周期乘以被測過程內的振動次數,即為該過程經歷的時間。機械鐘錶常用的振動系統有擺、扭轉擺和擺輪遊絲振動系統。
①擺:由擺錘、擺桿、掛擺裝置和周期調節裝置等組成。用於固定式鍾中(圖2 )。當擺錘在外力作用下偏離鉛垂線(平衡位置)任一角度而放開後,在重力作用下,擺錘將繞支點作往復運動。振動過程是擺的動能和位能交替轉換的過程。
②扭轉擺:主要由擺盤和懸絲組成(圖8)。懸絲下端固定擺盤,上端固定在不動的支點上。懸絲的截面可為矩形或圓形。扭轉擺常與後退式擒縱機構或叉瓦式擒縱機構構成擒縱調速系。扭轉擺有較長的振動周期(幾秒~幾十秒),多用於能量較節省而走時延續時間較長的固定式鍾。 ③擺輪遊絲振動系統(圖9):遊絲的內外端分別固定在擺軸和擺夾板上。擺輪受外力作用偏離其平衡位置開始擺動時,遊絲就被扭轉而產生位能,通常稱為恢復力矩。該力矩促使擺輪向其平衡位置運動。 上條撥針系 卷緊原動系中的發條和撥動時針、分針以校正鐘錶所指示時間的機構(圖10)。上條時,立輪和離合輪處於嚙合狀態。撥針時,離合輪和立輪脫開而與撥針輪嚙合。 參考書目
天津大學精儀系計時教研室編:《機械計時儀器》,天津科學技術出版社,天津,1980。
陳昌山編著:《手錶結構原理》,上海科學技術出版社,上海,1980。