定義
定義1
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/167/wZwpmLzYjM1cTN5YTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/b/cfe/wZwpmL3IjM1ETO2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設函式在數集上有定義,如果存在常數,使得對任意,有
![有界](/img/2/2dd/wZwpmL2gDMzITM2YzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2MzL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
則稱函式在數集上 有界,否則稱為 無界。
![有界](/img/9/72b/wZwpmL1ATMwMzN3cjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL4MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有界](/img/a/eae/wZwpmL2QzMxQDM1MjN1ATN0UTMyITNykTO0EDMwAjMwUzLzYzLzAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/a/4d0/wZwpmL0MDO0QDOzQDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/b/68e/wZwpmLwcTOzEDMwYzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2czL0QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例如,函式在其定義域內有界,這是因為對任意,總有。
![有界](/img/7/4d0/wZwpmL3MDNzIjM1QzN4MTN0UTMyITNykTO0EDMwAjMwUzL0czLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/a/9f8/wZwpmLwQDN3UjMxcjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL4YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/3/167/wZwpmLzYjM1cTN5YTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/9/83b/wZwpmLwUzM3MTN0AzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLyEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/1/2af/wZwpmL1QjM3UTM5YzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2MzLxUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/1/a3c/wZwpmLzMzM2YzNyYzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2czL0gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有界](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有界](/img/7/4d0/wZwpmL3MDNzIjM1QzN4MTN0UTMyITNykTO0EDMwAjMwUzL0czLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/e/eea/wZwpmL3MDNzczM1cjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL4QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有界](/img/8/49e/wZwpmLwMTN0IDO4kTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/1/ccc/wZwpmLzAzMycTM1ADOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLwEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/0/740/wZwpmL4MTN4gDN3czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/9/3b0/wZwpmLxYTM1EzNxQzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
再如,函式在其定義域內是無界的,這是因為對任意的實數,總存在點,顯然,使得,然而,對任意實數,函式在定義域的子集上卻是有界的,這是因為對任意,總有,於是便可取實數.使得。
定義2
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/0/a26/wZwpmL1MDO4YjM5cTO4kzM0UTMyITNykTO0EDMwAjMwUzL3kzL3IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/b/cfe/wZwpmL3IjM1ETO2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設函式在數集上有定義,如果存在常數,使得對任意,有
![有界](/img/f/5ee/wZwpmLxETOzIjM5QzN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0czL0YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/b/cfe/wZwpmL3IjM1ETO2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
則稱函式在數集上 有上界,並稱M為在A上的 上界.如果存在常數m,使得對任意,有
![有界](/img/f/747/wZwpmLzIDMxETOyMjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
則稱函式在數集上 有下界,並稱m為在上的 下界。
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有界](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
顯然,若在A上有界,則在A必有上、下界,反之,若在A上有上、下界,則在A上必有界。
![有界](/img/8/07a/wZwpmL3QDM2cTMxgDNxMDN0UTMyITNykTO0EDMwAjMwUzL4QzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/4/948/wZwpmLwIDNxYjN4kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由定義1可知,在集合A上有界函式的圖形在A上,應介於平行於x軸的兩條直線之間,如圖1所示。
![圖1](/img/0/084/wZwpmLxEDO2UTMyMDOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注意點
關於函式的有界性.應注意以下兩點:
(1)函式在某區間上不是有界就是無界,二者必屬其一;
![有界](/img/9/71f/wZwpmL1gDNxYDO5YTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL2kzL2czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)從幾何學的角度很容易判別一個函式是否有界(見圖2).如果找不到兩條與x軸平行的直線使得函式的圖形介於它們之間,那么函式一定是無界的,如。
![圖2](/img/7/759/wZwpmL2gDM4UDN0IDOwMzM1UTM1QDN5MjM5ADMwAjMwUzLygzL4gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例題解析
例1:討論下列函式的有界性:
![有界](/img/9/33b/wZwpmL4QDO5UjMxcTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1);
![有界](/img/0/2ba/wZwpmLwMDM3UDO5YTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL2kzLzMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(2).
![有界](/img/a/4d0/wZwpmL0MDO0QDOzQDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/5cf/wZwpmLzcTN0MzNzcDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL3gzL1YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/0/4f6/wZwpmL0MDOzMTNzAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/a/eae/wZwpmL2QzMxQDM1MjN1ATN0UTMyITNykTO0EDMwAjMwUzLzYzLzAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
解: (1)由於對一切,都有故在上是有界函式。
![有界](/img/0/2ba/wZwpmLwMDM3UDO5YTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL2kzLzMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/6/f49/wZwpmLxcDNxITN2UDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL1gzL0YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/3/ac5/wZwpmL4YTMzEjM2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzL4QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有界](/img/c/095/wZwpmLzcDM4AzMwIzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLyczLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/d/578/wZwpmL2EzNwITNwIzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyMzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)根據的圖形(見圖3)容易看出,不論正數M多么大,不等式不可能對一切均成立,因此在上是無界函式。
![有界](/img/f/1bd/wZwpmL4QzM4kDN1EjNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/c/095/wZwpmLzcDM4AzMwIzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLyczLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/1/36e/wZwpmLzUDMyUzN1kDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL5gzLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有界](/img/e/5ac/wZwpmLwADMzkDOxMjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/c/095/wZwpmLzcDM4AzMwIzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLyczLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/f/1bd/wZwpmL4QzM4kDN1EjNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
但如果在區間上討論函式,因對一切,不等式成立,故在區間上是有界函式。
例2:
![有界](/img/9/875/wZwpmLwITO5ADOzQTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0EzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
證明:函式是有界函式。
![有界](/img/9/875/wZwpmLwITO5ADOzQTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0EzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有界](/img/a/eae/wZwpmL2QzMxQDM1MjN1ATN0UTMyITNykTO0EDMwAjMwUzLzYzLzAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
證明:的定義域為,又
![有界](/img/0/d4f/wZwpmLzUzM4IzM5gDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL4gzL0MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有界](/img/9/875/wZwpmLwITO5ADOzQTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0EzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
因此是有界函式。