相傳
畢達哥拉斯學派錯誤地認為,宇宙間的一切現象都歸結為整數或整數之比.該學派的成員希伯索斯根據勾股定理(西方稱為畢達哥拉斯定理)發現了邊長為1的正方形的對角線並不能用整數比來表達。他因這一發現被投入海中淹死被稱為第一次數學危機。
畢達哥拉斯(Pythagoras,約公元前580年至公元前500年間)是古希臘的大數學家。他證明許多重要的定理,包括後來以他的名字命名的畢達哥拉斯定理(勾股定理),即直角三角形兩直角邊為邊長的正方形的面積之和等於以斜邊為邊長的正方形的面積。畢達哥拉斯將數學知識運用得純熟之後,覺得不能只滿足於用來算題解題,於是他試著從數學領域擴大到哲學,用數的觀點去解釋一下世界。經過一番刻苦實踐,他提出“萬物皆為數”的觀點:數的元素就是萬物的元素,世界是由數組成的,世界上的一切沒有不可以用數來表示的,數本身就是世界的秩序。
公元前500年,畢達哥拉斯學派的弟子希伯索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可公度的(若正方形的邊長為1,則對角線的長不是一個有理數),這一不可公度性與畢氏學派的“萬物皆為數”(指有理數)的哲理大相逕庭。這一發現使該學派領導人惶恐,認為這將動搖他們在學術界的統治地位,於是極力封鎖該真理的流傳,希伯索斯被迫流亡他鄉,不幸的是,在一條海船上還是遇到畢氏門徒。被畢氏門徒殘忍地投入了水中殺害。
意義
希伯索斯的發現,第一次向人們揭示了有理數系的缺陷,證明了它不能同連續的無限直線等同看待,有理數並沒有布滿數軸上的點,在數軸上存在著不能用有理數表示的“孔隙”。而這種“孔隙”經後人證明簡直多得“不可勝數”。於是,古希臘人把有理數視為連續銜接的那種算術連續統的構想徹底地破滅了。不可公度量的發現連同芝諾悖論一同被稱為數學史上的第一次數學危機,對以後2000多年數學的發展產生了深遠的影響,促使人們從依靠直覺、經驗而轉向依靠證明,推動了公理幾何學和邏輯學的發展,並且孕育了微積分思想萌芽。
不可約的本質是什麼?長期以來眾說紛紜,得不到正確的解釋,兩個不可通約的比值也一直認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為“無理的數”,17世紀德國天文學家克卜勒稱之為“不可名狀”的數。