國際熱核聚變實驗堆(ITER)計畫

國際熱核聚變實驗堆(ITER)計畫

“國際熱核聚變實驗堆(ITER)計畫”是目前全球規模最大、影響最深遠的國際科研合作項目之一,它的建造大約需要10年,耗資50億美元(1998年值)。ITER裝置是一個能產生大規模核聚變反應的超導托克馬克。2003年1月,國務院批准我國參加ITER計畫談判,經過三年談判,2006年5月24日,經國務院批准,中國ITER談判聯合小組代表我國政府與歐盟、印度、日本、韓國、俄羅斯和美國共同草簽了ITER計畫協定,這七方包括了全世界主要的核國家和主要的亞洲國家,覆蓋的人口接近全球一半。我國參加ITER計畫是基於能源長遠的基本需求。

ITER計畫(法國卡達拉舍) ITER計畫(法國卡達拉舍)

簡要概況

國際熱核聚變實驗堆(ITER)計畫 ,簡稱“(ITER)計畫”,(ITER:International Thermonuclear Experimental Reactor),ITER計畫 倡議於1985年,並於1988年開始實驗堆的研究設計工作。經過十三年努力,耗資十五億美元,在集成世界聚變研究主要成果基礎上,ITER工程設計於2001年完成。此後經過五年談判,ITER計畫七方2006年正式簽署聯合實施協定,啟動實施ITER計畫。ITER計畫將歷時35年,其中建造階段10年、運行和開發利用階段20年、去活化階段5年。中國政府堅定支持中國參與ITER計畫,胡錦濤多次就此做出重要指示。經過深入調研和充分論證,中國政府於2003年1月決定正式參加ITER計畫談判。此後,中國還積極推動談判進程,為儘早啟動實施ITER計畫進行不懈努力,這期間,中國先後承辦了ITER第九次和第十一次政府間談判會議。ITER計畫是目前世界上僅次於國際空間站的又一個國際大科學工程計畫。該計畫將集成當今國際上受控磁約束核聚變的主要科學和技術成果,首次建造可實現大規模聚變反應的聚變實驗堆,將研究解決大量技術難題,是人類受控核聚變研究走向實用的關鍵一步,因此備受各國政府與科技界的高度重視和支持。

ITER計畫(法國卡達拉舍) ITER計畫(法國卡達拉舍)

核聚變研究是當今世界科技界為解決人類未來能源問題而開展的重大國際合作計畫。與不可再生能源和常規清潔能源不同,聚變能具有資源無限,不污染環境,不產生高放射性核廢料等優點,是人類未來能源的主導形式之一,也是目前認識到的可以最終解決人類社會能源問題和環境問題、推動人類社會可持續發展的重要途徑之一。ITER計畫是實現聚變能商業化必不可少的一步,其目標是驗證和平利用聚變能的科學和技術可行性。ITER計畫集成了當今國際受控磁約束核聚變研究的主要科學和技術成果,擁有可靠的科學依據並具備堅實的技術基礎。國際上對ITER計畫的主流看法是:建造和運行ITER的科學和工程技術基礎已經具備,成功的把握較大,經過示範堆、原型堆核電站階段,可在本世紀中葉實現聚變能商業化。ITER計畫是我國改革開放以來有機會參加的最大的多邊國際大科學工程合作項目。參加ITER計畫有利於大幅度提升我國在科學技術領域參加國際合作的層次;有利於推動我國聚變能研究開發,加快我國聚變能開發進程;有利於我國學習掌握大型國際科學工程項目的建設、管理、運行和維修經驗;有利於提高我國超導技術、稀有金屬材料技術、高電壓技術等眾多領域的研究開發能力;有利於鍛鍊和造就一批高水平、高素質的科研人員、工程技術人員和管理人員,為我國聚變事業的發展打下堅實人才基礎。2003年1月國務院批准我國參加ITER計畫談判,經過三年談判,2006年5月24日,經國務院批准,中國ITER談判聯合小組代表我國政府與歐盟、印度、日本、韓國、俄羅斯和美國共同草簽了ITER計畫協定,標誌著ITER計畫進入全面實施的準備階段。(霍裕平院士ITER計畫中國專家委員會首席科學家、鄭州大學教授,潘傳紅研究員 中國核工業集團公司西南物理研究院院長,李建剛研究員 中國科學院電漿物理研究所所長)

2006年5月24日,國家科學技術部代表我國政府與其他六方一起,在比利時首都布魯塞爾草簽了《國際熱核聚變實驗堆(International Thermonuclear Experimental Reactor)聯合實施協定》。這標誌著ITER計畫實質上進入了正式執行階段,即將開始工程建設,也標誌著我國實質上參加了ITER計畫。

協商合作

歐盟、美、中、俄等2006年草簽系列合作協定 歐盟、美、中、俄等2006年草簽系列合作協定

ITER計畫是目前全球規模最大、影響最深遠的國際科研合作項目之一。它的建造大約需要十年,耗資五十億美元(1998年值)。合作承擔ITER計畫的七個成員是歐盟、中國、韓國、俄羅斯、日本、印度和美國,這七方包括了全世界主要的核國家和主要的亞洲國家,覆蓋的人口接近全球一半。為建設ITER,各參與方專門協商組建了一個獨立的國際組織,各國政府首腦在過去幾年中都採取不同方式對參加ITER計畫作出過正式表態。這些都是國際科技合作史上前所未有的,充分顯示了各國政府和科技界對該計畫的高度重視。

ITER計畫的實施結果將決定人類能否迅速地、大規模地使用聚變能,從而可能影響人類從根本上解決能源問題的進程。在全世界都對人類能源、環境、資源前景等問題予以高度關注的今天,各國堅持協商、合作的精神,擱置諸多的矛盾和利害衝突,最終達成了各方都能接受的協定,並開始合力建設世界上第一座聚變實驗堆。

我國 是一個持續高速發展的發展中大國,能源問題日益突出,因而長期以來對有可能徹底解決能源問題的核聚變能研究作了力所能及的安排,對國際上有關ITER計畫的討論一直給予高度關注。2002年底,國務院授權國家科學技術部代表我國政府參加ITER計畫國際協商,並於今年決定在協商完成後的草簽協定上籤字。這顯示了我國作為一個發展中大國對我國和對人類未來負責任的態度,以及對打開國門積極參加國際科技合作的決心。

聚變原理

歐盟、美、中、俄等2006年草簽系列合作協定 歐盟、美、中、俄等2006年草簽系列合作協定

如果說重原子核在中子打擊下分裂放出的"裂變能"是當今原子能電站及核子彈能量的來源,則兩個輕原子核聚合反應放出"核聚變能"就是宇宙間所有恆星(包括太陽)釋放光和熱及氫彈的能源。人類已經能控制和利用核裂變能,但由於很難將兩個帶正電核的輕原子核靠近從而產生聚變反應,控制和利用核聚變能則需要歷經長期的、非常艱苦的研發歷程。在所有的核聚變反應中,氫的同位素---氘和氚的核聚變反應(即氫彈中的聚變反應)是相對比較易於實現的。

氘氚核聚變反應也可以釋放巨大能量。氘在海水中儲量極為豐富,一公升海水裡提取出的氘,在完全的聚變反應中可釋放相當於燃燒300公升汽油的能量;氚可在反應堆中通過鋰再生,而鋰在地殼和海水中都大量存在。氘氚反應的產物沒有放射性,中子對堆結構材料的活化也只產生少量較容易處理的短壽命放射性物質。聚變反應堆不產生污染環境的硫、氮氧化物,不釋放溫室效應氣體。再考慮到聚變堆的固有安全性,可以說,聚變能是無污染、無長壽命放射性核廢料、資源無限的理想能源。受控熱核聚變能的大規模實現將從根本上解決人類社會的能源問題。

考慮到氘和氚原子核能產生聚變反應的條件,若要求氘、氚混合氣體中能產生大量核聚變反應,則氣體溫度必須達到1億度以上。在這樣高的溫度下,氣體原子中帶負電的電子和帶正電的原子核已完全脫開,各自獨立運動。這種完全由自由的帶電粒子構成的高溫氣體被稱為"電漿"。因此,實現"受控熱核聚變"首先需要解決的問題是用什麼方法及如何加熱氣體,使得電漿溫度能上升到百萬度、千萬度、上億度。但是,超過萬度以上的氣體是不能用任何材料所構成的容器約束,使之不飛散的,因此必須尋求某種途徑,防止高溫電漿逃逸或飛散。具有閉合磁力線的磁場(因為帶電粒子只能沿磁力線運動)是一種最可能的選擇。對不同設計出的"磁籠"中電漿運動行為及防止逃逸的研究(即所謂穩定性研究),成為實現受控熱核聚變的第二個難點。如果要使高溫電漿中核聚變反應能持續進行,上億度的高溫必須能長時間維持(不論靠聚變反應產生的部分能量,或外加部分能量)。或者可以說,電漿的能量損失率必須比較小。提高磁籠約束電漿能量的能力,這是論證實現磁約束核聚變的科學可行性的第三個主要內容。除了驗證科學可行性外,建設一個連續運行的聚變反應堆還需要解決加料、排廢、避免雜質、中子帶出能量到包層、產氚及返送以及由於聚變反應產生大量帶電氦原子核對電漿的影響等一系列科學和工程上的難題。

科技部副部長劉燕華(中)代表中國政府簽署 科技部副部長劉燕華(中)代表中國政府簽署

從20世紀40年代末起,各國就開發了多種磁籠途徑,並由之出發,對聚變能科學可行性展開了不同規模的理論與實驗探索研究。投入科學家及工程師上千人,經費總計每年超過10億美元。各途徑競爭非常激烈,其間紛爭不斷。在這過程中,人們對實現聚變能難度的認識也逐步加深。但從20世紀70年代開始,蘇聯科學家發明的"托克馬克"途徑逐漸顯示出了獨特的優點,並在80年代成為聚變能研究的主流途徑。托克馬克裝置又稱環流器,是一個由環形封閉磁場組成的"磁籠"。電漿就被約束在這"磁籠"中,很像一個中空的麵包圈,電漿環中感生一個很大的環電流。隨著各國大小不一的托克馬克裝置的建成、投入運行和實驗,托克馬克顯示了較為光明的前景:電漿達到了數百萬度,電漿約束也獲得了明顯效果。科學家們認識到,如果擴大此類裝置的規模,有可能獲得接近聚變條件的電漿。

20世紀90年代,在歐洲、日本、美國的幾個大型托克馬克裝置上,聚變能研究取得突破性進展。不論在電漿溫度、在穩定性及在約束方面都已基本達到產生大規模核聚變的條件。初步進行的氘-氚反應實驗,得到16兆瓦的聚變功率。可以說,聚變能的科學可行性已基本得到論證,有可能考慮建造"聚變能實驗堆",創造研究大規模核聚變的條件。

發展歷程

國際熱核聚變實驗反應堆(ITER)計畫 國際熱核聚變實驗反應堆(ITER)計畫

由於聚變能的研究不僅關係到最終解決人類能源問題,而且還涉及眾多最先進且非常敏感的技術,因此,ITER計畫的形成除與科學技術本身的發展有關外,還始終與主要大國在政治和外交方面的考慮分不開。本文將主要從科學和技術角度作一些分析和說明。

1985年,作為結束冷戰的標誌性行動之一,前蘇聯領導人戈巴契夫和美國總統里根在日內瓦峰會上倡議,由美、蘇、歐、日共同啟動"國際熱核聚變實驗堆(ITER)"計畫。ITER計畫的目標是要建造一個可自持燃燒(即"點火")的托可馬克核聚變實驗堆,以便對未來聚變示範堆及商用聚變堆的物理和工程問題做深入探索。

最初,該計畫僅確定由美、俄、歐、日四方參加,獨立於聯合國原子能委員會(IAEA)之外,總部分設美、日、歐三處。由於當時的科學和技術條件還不成熟,四方科技人員於1996年提出的ITER初步設計很不合理,要求投資上百億美元。1998年,美國出於政治原因及國內紛爭,以加強基礎研究為名,宣布退出ITER計畫。歐、日、俄三方則繼續堅持合作,並基於上世紀90年代核聚變研究及其他高新技術的新發展,大幅度修改實驗堆的設計。2001年,歐、日、俄聯合工作組完成了ITER裝置新的工程設計(EDA)及主要部件的研製,預計建造費用為50億美元(1998年價),建造期8至10年,運行期20年。其後,三方分別組織了獨立的審查,都認為設計合理,基本上可以接受。

2002年,歐、日、俄三方以EDA為基礎開始協商ITER計畫的國際協定及相應國際組織的建立,並表示歡迎中國與美國參加ITER計畫。中國於2003年1月初正式宣布參加協商,其後美國在1月末由布希總統特別宣布重新參加ITER計畫,韓國在2005年被接受參加ITER計畫協商。以上六方於2005年6月簽訂協定,一致同意把ITER建在法國核技術研究中心Cadarache,從而結束了激烈的"選址大戰"。印度於2006年加入ITER協商。最終,七個成員國政府於2006年5月25日草簽了建設ITER的國際協定。目前國際組織正在組建,總幹事和副總幹事人選已確定。還有一些國家也正在考慮參加ITER計畫。

在ITER建設總投資的50億美元(1998年值)中,歐盟貢獻46%%,美、日、俄、中、韓、印各貢獻約9%%。根據協定,中國貢獻中的70%%以上由我國製造所約定的ITER部件折算,10%%由我國派出所需合格人員折算,需支付國際組織的外匯不到20%%。

作為聚變能實驗堆,ITER要把上億度、由氘氚組成的高溫電漿約束在體積達837立方米的"磁籠"中,產生50萬千瓦的聚變功率,持續時間達500秒。50萬千瓦熱功率已經相當於一個小型熱電站的水平。這將是人類第一次在地球上獲得持續的、有大量核聚變反應的高溫電漿,產生接近電站規模的受控聚變能。

在ITER上開展的研究工作將揭示這種帶有氘氚核聚變反應的高溫電漿的特性,探索它的約束、加熱和能量損失機制,電漿邊界的行為以及最佳的控制條件,從而為今後建設商用的核聚變反應堆奠定堅實的科學基礎。對ITER裝置工程整體及各部件在50萬千瓦聚變功率長時間持續過程中產生的變化及可能出現問題的研究,不僅將驗證受控熱核聚變能的工程可行性,而且還將對今後如何設計和建造聚變反應堆提供必不可少的信息。

ITER的建設、運行和實驗研究是人類發展聚變能的必要一步,有可能直接決定真正聚變示範電站(DEMO)的設計和建設,並進而促進商用聚變電站的更快實現。

ITER裝置是一個能產生大規模核聚變反應的超導托克馬克。其裝置中心是高溫氘氚電漿環,其中存在15兆安的電漿電流,核聚變反應功率達50萬千瓦,每秒釋放多達1020個高能中子。電漿環在禁止包層的環型包套中,禁止包層將吸收50萬千瓦熱功率及核聚變反應所產生的所有中子。

在包層外是巨大的環形真空室。在下側有偏慮器與真空室相連,可排出核反應後的廢氣。真空室穿在16個大型超導環向場線圈(即縱場線圈)中。

國際熱核聚變實驗反應堆外觀模型 國際熱核聚變實驗反應堆外觀模型

環向超導磁體將產生5.3特斯拉的環向強磁場,是裝置的關鍵部件之一,價值超過12億美元。

穿過環的中心是一個巨大的超導線圈筒(中心螺管),在環向場線圈外側還布有六個大型環向超導線圈,即極向場線圈。中心螺管和極向場線圈的作用是產生電漿電流和控制電漿位形。

上述系統整個被罩於一個大杜瓦中,坐落於底座上,構成實驗堆本體。

在本體外分布4個10兆瓦的強流粒子加速器,10兆瓦的穩態毫米電磁波系統,20兆瓦的射頻波系統及數十種先進的電漿診斷測量系統。

整個體系還包括:大型供電系統、大型氚工廠、大型供水(包括去離子水)系統、大型高真空系統、大型液氮、液氦低溫系統等。

ITER本體內所有可能的調整和維修都是通過遠程控制的機器人或機器手完成。

ITER裝置不僅反映了國際聚變能研究的最新成果,而且綜合了當今世界各領域的一些頂尖技術,如:大型超導磁體技術,中能高流強加速器技術,連續、大功率毫米波技術,複雜的遠程控制技術等等。

中國情況

國際熱核聚變實驗堆(ITER)計畫 國際熱核聚變實驗堆(ITER)計畫

我國 核聚變能研究開始於60年代初,儘管經歷了長時間非常困難的環境,但始終能堅持穩定、逐步的發展,建成了兩個在開發中國家最大的、理工結合的大型現代化專業研究所,即中國核工業集團公司所屬的西南物理研究院(SWIP)及中國科學院所屬的合肥電漿物理研究所(ASIPP)。為了培養專業人才,還在中國科技大學、大連理工大學、華中科技大學、清華大學等高等院校中建立了核聚變及電漿物理專業或研究室。

我國核聚變研究從一開始,即便規模很小時,就以在我國實現受控熱核聚變能為主要目標。從上世紀70年代開始,集中選擇了托克馬克為主要研究途徑,先後建成並運行了小型CT-6(中科院物理所)、KT-5(中國科技大學)、HT-6B(ASIPP)、HL-1(SWIP)、HT-6M(ASIPP)及中型HL-1M(SWIP)。最近SWIP建成的HL-2A經過進一步升級,有可能進入當前國際上正在運行的少數幾個中型托克馬克之列。在這些裝置的成功研製過程中,組建並鍛鍊了一批聚變工程隊伍。我國科學家在這些常規托克馬克裝置上開展了一系列十分有意義的研究工作。

自1991年,我國開展了超導托克馬克發展計畫(ASIPP),探索解決托克馬克穩態運行問題。1994年建成並運行了世界上同類裝置中第二大的HT-7裝置,最近初步建成了首個與ITER位形相似(規模小很多)的全超導托克馬克EAST。超導托克馬克計畫無疑為我國參加ITER計畫在技術與人才方面做了進一步的準備。

"聚變-裂變混合堆項目"於1987年正式列入我國"863計畫",目的是探索利用核聚變反應的另一類有效途徑,其中主要安排了一些與未來核聚變堆有關技術的研發。2000年由於諸多原因,"聚變-裂變混合堆項目"被中止,但核聚變堆概念設計以及堆材料和某些特殊堆技術的研究仍在兩個專業院所繼續進行。

儘管就規模和水平來說,我國核聚變能的研究和美、歐、日等已開發國家還有不小的差距,但是我們有自已的特點,也在技術和人才等方面為參加ITER計畫做了相當的準備。這使得我們有能力完成約定的ITER部件製造任務,為ITER計畫做出相應的貢獻,並有可能在合作過程中全面掌握聚變實驗堆的技術,達到我國參加ITER計畫總的目的。

我國 是一個能源大國,在本世紀內每年的能耗都將是數十億噸標煤。由於條件限制,在長時間內我國能源生產都將以煤為主,所占比例高達70%%。考慮到我國社會經濟的長期可持續發展,我們必須儘快用可靠的非化石能源(如核裂變或核聚變能、太陽能、水能等)來取代大部分煤或石油的消耗。因此,必然應該在能力許可範圍內積極開展核聚變能的研究,儘可能地參加國際核聚變能的大型合作研發計畫(如ITER計畫)。我國參加ITER計畫是基於能源長遠的基本需求。

2006ITER計畫歐盟、中、美等各國代表團出席 2006ITER計畫歐盟、中、美等各國代表團出席

核聚變能的研發對每個大國都是必要的,但又是一個長期、大規模、高投入而且又是高風險的過程。我國核聚變研究目前距離已開發國家還有很大差距,還須經過若干年的努力才能接近"實驗堆"建設和研究階段。如果採取單獨建造實驗堆,則又須花費上百億資金和十數年時間,我國和國際的差距會進一步擴大。因此,參加ITER計畫,參加ITER的建設和實驗,從而全面掌握ITER的知識和技術,培養一批聚變工程和科研人才,使其成為我國聚變研究的一部分。再配合國內安排必要的基礎研究、聚變反應堆材料的研究、聚變堆某些必要技術的研究等,則有可能在較短時間、用較小投資使我國核聚變能研究在整體上進入世界前沿,為我國自主地開展核聚變示範電站的研發奠定基礎。

我們還必須看到,ITER本身就是當代各類高新技術的綜合,中國科技人員長期、全面地參加ITER的建設和研究工作,直接接觸和了解各類技術,必將有利於我國高新技術及相應產業的發展。事實上,參加ITER計畫已開始推動我國超導技術與相關產業的發展。

由於ITER計畫本身的重要性,我國作為完全的夥伴全面參加ITER計畫,就成為我國參加國際科技合作走上更高層次的一個明顯的標誌。這也在國際上展示了我國在科技領域堅持"開放"的決心。

我國聚變研究的中心目標,是促使核聚變能在可能的條件下,儘早在中國實現。因此參加ITER計畫應該也只能是我國整體聚變能研發計畫中的一個重要組成部分。國家將在參加ITER計畫的同時支持與之配套或與之互補的一系列重要研究工作,如托克馬克電漿物理的基礎研究、聚變堆第一壁等關鍵部件所需材料的開發、示範聚變堆的設計及必要技術或關鍵部件的研製等。參加ITER計畫將是我國聚變能研究的一個重大機遇。

聚變套用

國際聚變界普遍認為,今後實現聚變能的套用將歷經三個戰略階段,即:建設ITER裝置並在其上開展科學與工程研究(有50萬千瓦核聚變功率,但不能發電,也不在包層中生產氚);在ITER計畫的基礎上設計、建造與運行聚變能示範電站(近百萬千瓦核聚變功率用以發電,包層中產生的氚與輸入的氘供核聚變反應持續進行);最後,將在本世紀中葉(如果不出現意外)建造商用聚變堆。我國將力爭跟上這一進程,儘快建造商用聚變堆,使得核聚變能有可能在本世紀末在我國能源中占有一定的地位。

相關詞條

相關搜尋

熱門詞條

聯絡我們