在收得同晶置換物的衍射數據後,改變入射線波長至靠近重原子的吸收邊處,再次收集數據,這套數據是存在反常散射的,可利用這兩套數據來求位相。有如多同晶置換法,如採用幾個不同波長的X射線,對所含不同元素收集幾套反常散射數據,則可得更正確、更完整的相位信息,是為多波長反常衍射法(MAD),是目前解分子生物大分子的重要方法。實驗室X射線光源不易使用這一方法,因要改變X射線波長是很困難的,而對於同步X射線光源,改變波長是相當方便的,因此常被使用
在收得同晶置換物的衍射數據後,改變入射線波長至靠近重原子的吸收邊處,再次收集數據,這套數據是存在反常散射的,可利用這兩套數據來求位相。有如多同晶置換法,如採用幾個不同波長的X射線,對所含不同元素收集幾套反常散射數據,則可得更正確、更完整的相位信息,是為多波長反常衍射法(MAD),是目前解分子生物大分子的重要方法。實驗室X射線光源不易使用這一方法,因要改變X射線波長是很困難的,而對於同步X射線光源,改變波長是相當方便的,因此常被使用