概念
設 為n維隨機變數,稱矩陣
為n維隨機變數 的協方差矩陣(covariance matrix),也記為 ,其中
為 的分量 和 的協方差(設它們都存在)。
例如,二維隨機變數 的協方差矩陣為
其中
由於 ,所以協方差矩陣為對稱非負定矩陣。
性質
協方差矩陣具有如下性質:
(1) .
(2) ,其中A是矩陣,b是向量。
(3) 。
套用
協方差矩陣可用來表示多維隨機變數的機率密度,從而可通過協方差矩陣達到對多維隨機變數的研究。以二維隨機變數 為例,由於
引入矩陣
,
及 的協方差矩陣
由此可得
由於
於是的機率密度
此式可以推廣到n維常態分配的情形。