半導體光學和輸運現象

半導體光學和輸運現象

《半導體光學和輸運現象》,由科學出版社於2011年出版,書籍簡介:作者全面介紹了半導體光學和輸運現象領域的基本理論和理論在半導體雷射器,半導體探測器,電光調製器,單電子電晶體,微腔和雙壘共振隧道二極體等方面的套用。

基本信息

內容簡介

這是一本半導體物理方面的教科書,寫給研究生和研究人員,它屬於Springer的Advanced Textsin Physics書系,2002年出版。假定讀者已有固體物理學的基礎知識,作者全面介紹了半導體光學和輸運現象領域的基本理論和理論在半導體雷射器,半導體探測器,電光調製器單電子電晶體,微腔和雙壘共振隧道二極體等方面的套用。書中有一百多個習題和解法,以幫助讀者深入理解本書的內容。本書是為工作在這一領域的研究生和高年級大學生寫的,也是活躍在這一領域的科學工作者的一本很好的參考書。

本書目錄

1.Some Basic Facts on Semiconductors

1.1 Semiconductor Heterostructures

1.2 Doped and Modulation-Doped Semiconductors

2.Interaction of Matter and Electromagnetic Fields

2.1 Microscopic Maxwell Equations

2.2 The Many-Particle Hailliltonian

2.3 SecondQuantizationfor Particles

2.4 Quantization of Electromagnetic Fields

2.4.1 Coherent States

2.5 The Interaction Hamitonian of Fields and Particles

2.6macroscopicMaxwell Equations and Response Functions

2.6.1 Direct Calculation of Induced Charges and Currents

2.6.2 Phenomenological Theory of Linear Response

2.6.3 Time-Dependent Perturbation Theory

2.6.4 Longitudinal Response Functions

2.6.5 Transverse Response Functions

2.7 Measurable Quantities in Optics

2.7.1 Linear Optical Susceptibnity and Macroscopic Polarization

2.7.2 Absorption cOEfficient

2.8 Problems

3.One-Particle Properties

3.1 Hartree-Fock Theory for Zero Temperature

3.2 Hartree-Fock Theory for Finite Temperature

3.3 Band Structure and Ground-State Properties

3.3.1 The Local-Density Approximation

3.3.2 Latticeperiodicity

3.4 The Effective-Mass Approximation

3.5 Kp Perturbation Theory for Degenerate Bands

3.6 Transition Matrix Elements

3.7 Density of States

3.8 Position of the Chemical Potential

3.9 Problems

4.Uncorrelated Optical Transitions

4.1 The Optical Bloch Equations

4.2 Linear Optical Properties

4.3 Nonlinear Optical Properties

4.3.1 Perturbation Analysis in the Frequency Domain

4.3.2 Introducing the Bloch Vector

4.3.3 Perturbation Analysis in the Time Domain

4.3.4 Alternative Approaches

4.4 Semiconductor Photodetectors

4.4.1 The Field-Field Correlation Punction and its Relation to Coherence

4.5 Problems

5.Correlated Transitions of Bloch Electrons

5.1 Equations of Motion in the Hartree-Fock Approximation

5.2 Linear Optical Properties:The Continuum of Interband Transitions

5.2.1 The Bethe-Salpeter Equation

5.2.2 The Dielectric Function

5.3 Solution by Continued Fractions

5.4 Problems

6.Correlated Transitions near the Band Edge

6.1 The Semiconductor Bloch Equations

6.2 Linear Optical Properties:Bound Electron-Hole Pairs

6.2.1 The Coulomb Green's Function

6.2.2 Optical Properties due to Bound Electron-Hole Pairs

6.2.3 Numerical Methods

6.2.4 Excitons in Quantum Wells

6.2.5 Propagation of Light:Polaritons and Cavity Polaritons

6.3 Nonlinear Optical Properties

6.3.1 The Local-Field Approximation

6.3.2 Numerical Solutions

6.4 Problems

7.Influence of Static Magnetic Fields

7.1 One-Particle Properties

7.1.1 Effective Mass Theory for Isolated Bands

7.1.2 Degenerate Bloch Electrons in a Magnetic Field

7.1.3 One-Particle States in Quantum Wells

7.2 Optical Properties of Magneto-Excitons

7.2.1 Evaluation of the Coulomb Matrix Element

7.2.2 Linear Optical Properties

7.2.3 Semiconductor Bloch Equations in Two and Three Dimensions

7.2.4 Bose Condensation of Magnetoexcitons in Two Dimensions

7.2.5 Nonlinear Absorption of Magnetoexcitons in Quantum Wells

7.3 Problems

8.Influence of Static Electric Fields

8.1 Introduction

8.2 Uncorrelated Optical Transitions in Uniform Electric Fields

8.2.1 Optical Absorption

8.3 Correlated Optical Transitions in Uniform Electric Fields

8.3.1 An Analytical Model

8.3.2 Representation in Parabolic Coordinates

8.4 Quantum Wells in Electric Fields

8.5 Superlattices in Electric Fields

8.5.1 One-Particle States in Superlattices

8.5.2 Semiconductor Bloch Equations

8.6 Problems

9.Biexeitons

9.1 Truncation of the Many-Particle Problem in Coherently Driven Systems

9.1.1 Decomposition of Expectation Values

9.2 Equations of Motion in the Coherent Limit

9.2.1 Variational Methods

9.2.2 Eigenfunction Expansion

9.3 Bound-State and Scattering Contributions

9.3.1 Separation of Bound States

9.3.2 Biexcitonic Scattering Contributions

9.4 Signatures of Biexcitonic Bound States

9.4.1 Nonlinear Absorption

9.4.2 Four-Wave Mixing

9.5 Problems

10.Nonequilibrium Green's Functions

10.1 Time Evolution under the Action of External Fields

10.2 Definitions of One-Particle Green's Functions

10.3 Equations of Motion of One-Particle Green's Functions

10.4 Screened Interaction,Polarization,and Vertex Function

10.5 Quantum Kinetic Equations

10.5.1 The Two-Timeformalism

10.5.2 Reduction of Propagators to Single Time Functions

10.6 The Self-Energy in Different Approximations

10.6.1 Ground-State Energy

10.6.2 The Screened Hartree-Fock Approximation

10.7 The Screened Interaction

10.7.1 Separation of the Intraband and the Interband Susceptibility

10.7.2 The Screened Interaction in Random Phase Appproximation

10.8 The Second-Order Born Approximation

10.9 Problems

11.The Electron-Phonon Interaction

11.1 The Phonon-Induced Interaction

11.2 The Phonon Green's Function

11.2.1 Eigenmodes of Lattice Vibrations

11.2.2 Green's Function Representation of the Density-Density Correlation Function

11.3 Electron Phonon Coupling in the Long-Wavelength Limit

11.3.1 Coupling to Longitudinal Optical Phonons

11.3.2 Coupling to Acoustic Phonons

11.4 The Phonon Self-Energy

11.4.1 The Polaron

11.4.2 Dephasing Induced by Phonons

11.5 Nonequilibrium Phonons

11.5.1 Renormalization of Phonons

11.5.2 Kinetic Equation for the Phonon Green's Function

11.6 Problems

12.Scattering and Screening Processes

12.1 Carrier Phonon Scattering

12.1.1 Luminescence Spectra

12.1.2 Four-Wave-Mixing Experiments

12.1.3 Nonequilibrium Phonons

12.2 Carrier-Carrier Scattering

12.2.1 The Limit of Quasi-Equilibrium

12.3 Scattering in the Presence of Bound States

12.3.1 Exciton-Phonon Scattering

12.3.2 Exciton-Exciton versus Exciton-Electron Scattering

12.4 Problems

13.The Semiconductor Laser

13.1 Introduction

13.2 Semiclassical Approach

13.2.1 The Semiconductor Bloch Equations in a Cavity

13.2.2 The Standard Rate Equations

13.2.3 Extended Rate Equations

13.2.4 Spectral Hole-Burning

13.3 Quantum Theory

13.3.1 The Photon Kinetics

13.3.2 The Carrier Kinetics

13.3.3 The Semiconductor Laser Linewidth

13.4 Problems

14.Classical Transport

14.1 Transport Coefficients(Without Magnetic Field)

14.1.1 Electrical Conductivity

14.1.2 Peltier Coefficient

14.1.3 Thermal Conductivity

14.2 Transport Coefficients(with Magnetic Field)

14.2.1 Hall Effect and Hall Resistance

14.3 TowardsballisticElectrons:The Hot-Electron Transistor

14.4 Problems

15.Electric Fields in Mesoscopic Systems

15.1 Elementary Approach

15.1.1 ResonantTunneling

15.1.2 Quantizedconductance

15.1.3 Coulomb Blockade and the SET Transistor

15.2 Resonant Tunneling Ⅱ

15.2.1 Boundary Conditions and Discretization

15.2.2 Scattering Contributions

15.2.3 Numerical Results

15.2.4 Time-Dependent Phenomena

15.3 Problems

16.Electric and Magnetic Fields in Mesoscopic Systems

16.1 The Integer Quantum Hall Effect

16.2 Edge Channels and the Landauer-Buttiker Multiprobe Formula

16.2.1 Edge Channels

16.3 Microscopic Derivation of the Landauer-Biittiker Formula

16.3.1 Linear Response Theory

16.3.2 The Multiprobe Landauer-Büttiker Formula

16.4 The Fractional Quantum Hall Effect

16.5 Magnetotransport Through Dot or Antidot-Lattices

16.6 Problems

References

Index

相關詞條

相關搜尋

熱門詞條

聯絡我們