分類討論思想

每個數學結論都有其成立的條件,每一種數學方法的使用也往往有其適用範圍,在我們所遇到的數學問題中,有些問題的結論不是唯一確定的,有些問題的結論在解題中不能以統一的形式進行研究,還有些問題的已知量是用字母表示數的形式給出的,這樣字母的取值不同也會影響問題的解決,由上述幾類問題可知,就其解題方法及轉化手段而言都是一致的,即把所有研究的問題根據題目的特點和要求,分成若干類,轉化成若干個小問題來解決,這種按不同情況分類,然後再逐一研究解決的數學思想,稱之為分類討論思想。

分類討論原則

1、 每級分類按同一標準進行

2、 分類應逐級進行

3、 同級互斥、不得越級

分類討論對象

【數與代數】

1、 概念分段定義

2、 公式、定理、法則分段表達

3、 實施某些運算引起分類討論

4、 含參方程或不等式

【幾何】

5、 圖形位置不確定

6、 圖形形狀不確定

【其他】

題設本身有分類

分類討論步驟

1、 明確分類對象

2、 明確分類標準

3、 逐類分類、分級得到階段性結果

4、 用該級標準進行檢驗篩選結果

5、 歸納作出結論

分類討論類型

【類型一、與數與式有關的分類討論】

熱點1:實數分類、絕對值、算術平方根

熱點2:與函式及圖象有關的分類討論 :變數取值範圍、增減性

熱點3:含參不等式

熱點4: 涉及問題中待定參數的變化範圍的分類討論。

熱點5:含參方程

【類型二:三角形中 的分類討論】

熱點1. 與等腰三角形有關的分類討論 在等腰三角形中,無論邊還是頂角、底角不確定的情況下,要分情況求解,有時要分鈍角三角形、直角三角形、銳角三角形分別討論解決.

(1) 與角有關的分類討論

(2) 與邊有關的分類討論

(3) 與高有關的分類討論

熱點 2 與直角三角形有關的分類討論: 在直角三角形中,如果沒有指明哪條邊是直角邊、斜邊,這需要根據實際情況討論;當然,在不知哪個角是直角時,有關角的問題也需要先討論後求解.

熱點3:與 相似三角形有關的分類討論

(1) 對應邊不確定

(2) 對應角不確定

類型三:圓中的分類討論

熱點1:點與圓的位置關係不確定

熱點2:弦所對弧的優劣情況的不確定而分類討論

熱點3:兩弦與直徑位置

熱點4:直線與圓的位置的不確定

熱點5:圓與圓的位置的不確定


註:套用分類討論思想解決問題必須保證分類科學,標準統一,做到不重複,不遺漏,並力求最簡。

相關詞條

熱門詞條

聯絡我們