Radeon R200

Radeon R200

Radeon 8500 (核心代號 R200) 是一個Radeon系列顯示卡核心能夠將ATI放在與nVIDIA競爭的層面上,亦成功使當時的ATI脫離衰退顯示卡廠商的行列。它亦是全球首款完整支持DirectX 8.1的產品,GeForce 3隻能算是支持DirectX 8.0。

旗艦級產品

ATI的第一張DirectX 8顯示卡就是Radeon 8500。在2002年初期,ATI發布了Radeon 8500LE(即是後來重新發布的Radeon 9100),核心與Radeon 8500相同,只是核心和顯示記憶體的頻率較低。反之,完整的8500的核心和顯示記憶體頻率都是275 MHz,而8500LE的核心頻率則保守的設成250 MHz,顯示記憶體頻率則是200或者250 MHz。原先兩張顯示卡都配備了64 MB DDR SDRAM作為顯示記憶體,後來的Radeon 8500則配備了128 MB顯示記憶體,能夠從記憶交插模式中獲得額外的效能提升。

結構

Radeon 8500的基本結構與當時的其他顯示卡差不多;它擁有四個像素單元,每個像素單元擁有兩個紋理單元。它亦支援DirectX 8.1的頂點著色引擎和像素著色引擎,它的兩個頂點著色引擎被稱為Charisma Engine II,為新的頂點著色程式和舊的DirectX 7硬體T&L都提供出色的效能。"R200"核心was more capable with regards to advanced pixel and vertex shading when compared to the competition at the time (GeForce 3 and 4), supporting DirectX 8.1 (pixel shader 1.4) with Pixel Tapestry II. R200 also had the most advanced memory bandwidth saving hardware of the time onboard, the next version of ATI's innovative HyperZ, HyperZ II. The chip was capable of dual-monitor display, through the Hydravision technology. Finally, R200 was equipped with Video Immersion II, ATI's advanced video decoding engine with high quality hardware deinterlacing. A DVI-I to component conversion connector was available for home theater enthusiasts.

R200支援像素著色器版本1.4,相對1.x版本的設計,這個修訂版本是意義重大的。鑒於PS1.2和1.3隻是PS1.1的改進版,PS1.4 changed things around quite significantly. Notable instructions include "phase", "texcrd", and "texld". The phase instruction allows a shader to operate on two separate "phases" (2 passes through the hardware), effectively doubling the maximum number of texture addressing and arithmetic instructions, and potentially allowing the number of passes required for an effect to be reduced. This allowed not only more complicated effects, but can also allow a speed boost by utilizing the hardware more efficiently. The "texcrd" instruction moves the texture coordinate values of a texture into the destination register, while the "texld" instruction will load the texture at the coordinates specified in the source register to the destination register.

DirectX 8.0

Pixel Shader 1.1 DirectX 8.1

Pixel Shader 1.4

最大紋理輸入 4 6

最長指令長度 12 instructions

(up to 4 texture sampling, 8 color blending) 22 instructions

(up to 6 texture sampling, 8 texture addressing, 8 color blending)

指令集 13 address operations, 8 color operations 12 address / color operations

紋理定址模式 40 virtually unlimited

While R200 lost a texture unit per pipeline compared to R100's 2x3 architecture, R200's pipelines were far more robust. Each could address a total of 6 texture layers in a single pass if the application was coded to do so. The chip achieved this by a term commonly known as ‘loop-back’. Increasing the flexibility in the number of textures allowed per pass reduced the number of times the card was forced into ‘multi-pass rendering’, a performance draining scenario which increases both the geometry required for the scene (by needing to recalculate the entire scene for the number of times it is passed) and the external memory bandwidth used. Therefore, the chip's overall efficiency and performance was increased by enabling more textures to be addressed per pass. Testing using Serious Sam The Second Encounter showed a 16 % performance increase at 1600x1200 resolution with quad texturing and bilinear filtering (in comparison with dual and triple texturing).

特色

利用Radeon 256,ATI透過"RIP" mapping方法引進了各異向性過濾。"RIP" mapping技術上其實不是各異向性過濾,但可提供相似的效果,效能損失亦較少。不幸地,這種方法只在配合雙線性過濾時有效。The implementation was also quite angle dependent, meaning that the texture had to be at a certain angle to the viewport or it would not be sharpened. Of course this reduced the computational load, but it also made it possible to see textures that were merely bilinear filtered right beside nearby sharpened textures. Radeon 8500 uses the same technique, but with some refinements to improve quality while still maintaining excellent performance. When anisotropic was enabled on 8500, the boundaries between mip maps, normally easily seen when using bilinear filtering instead of trilinear, were fairly well hidden and the anisotropic mode greatly improves texture sharpness at medium to long distances. Still, the remaining angle dependency and forced-bilinear were controversial from a quality standpoint. NVIDIA's GeForce 4 Ti series offered a far more accurate anisotropic implementation, but it also carried with it a heavy performance hit.

8500擁有第一和唯一的ATI硬體加速鑲嵌繪圖引擎,名為"Truform"。它可以在立體模型上增加多邊形,令模型更平滑。這種技術儘管要求開發者支援,但卻不能完善支援;不幸地,"Truform"對所有三維渲染方案而言都不是完美的,亦傾向不合意地對物體進行此動作。未來的ATI GPU並沒有硬體加速Truform,而只作出支援。未來的GPU一是透過CPU去模擬Truform,一是利用頂點著色程式模擬,兩者都不能與8500的Truform單元般有效率。

性能

Radeon 8500最令人掃興的事就是最初發布的驅動程式。發布時,顯示卡的效能十分差。最初的驅動程式充滿臭蟲,一些功能甚至是不完整的。驅動程式不能完全支援顯核的功能。例如抗鋸齒功能只在Direct3D的情況下有效,而且效能十分差。早期的驅動程式不能在很多的電腦遊戲中完美地運行,顯示出很多錯誤畫面,例如多邊形被誤放和閃爍的紋理。當時nVidia在Radeon 8500在網上預告的同一天推出了Detonator4驅動程式,nVidia的驅動程式大體上質量較高,亦提高了GeForce 3的效能。

更甚的是,有幾個評測網站揭露出Radeon 8500的真正效能比標準檢查程式所測出的低很多。評論者發現ATI偵測出執行檔Quake3.exe,強行將紋理過濾品質調低。HardOCP的Kyle Bennett首先發現這個問題,他將Quake3.exe改名為Quack.exe。結果,圖像品質提高了,效能卻慢了。

儘管如此,縱使使用了Detonator4驅動程式,Radeon 8500的效能依然勝過GeForce 3(8500預期中的對手)。在一些更快修正的環境中,Nvidia是使用Ti500對抗R200計畫。另外,更新了的驅動程式拉近了8500和Ti500的性能缺口,而8500亦比較便宜,提供額外的多媒體特色,例如支援雙顯示輸出。雖然GeForce 3 Ti200是第一張DirectX 8.0顯示卡,提供了128 MB顯示記憶體。而當時的高端顯示卡普遍只會採用64 MB顯示記憶體。結果,GeForce 3的限制使它不能取得全部的優勢,而Radeon 8500就能夠更成功的取得輝煌成就。

2002年年頭,為了與平價的GeForce 3 Ti200競爭,ATI推出了較低時脈的8500LE,由於其較低售價,亦有機會超頻回8500的水平,所以它受到OEMs和熱心者歡迎。GeForce 4 Ti 4200的延遲發布,使ATI主動推出擁有128 MB顯示記憶體的8500/LE,保持了ATI的中高端產品線的流行程度。而All-In-Wonder (AIW) Radeon 8500 DV和AIW Radeon 8500 128 MB則提供更多功能,迫使Nvidia推出Personal Cinema版本的GeForce 4 Ti 4200。

更新

根據推測,8500XT (R250)是會被發布的。它是用來對付GeForce 4 Ti產品線,尢其是最高端的Ti 4600。根據預先發布的訊息,8500XT的核心和顯示記憶體的頻率將會是300 MHz。ATI,也許記得當年3dfx所發生的事,認為就算Radeon 8500以300 MHz的頻率來運行,都不足以對抗GeForce 4 Ti4600;而且還會拖慢下一代支援DirectX 9.0的產品的研發,令NVIDIA有機可乘。所以最好的辦法就是安排它成為中端產品,以取代較低複雜度的Radeon 9000。但這樣做會增加額外的生產成本,而較大的核心和電源消耗亦會阻礙它的發展。尤其要注意的是Radeon 8500和Radeon 9000核心需要增加電壓才能以300 MHz穩定運行,毫無疑問地,R250亦要面對此種問題由於其複雜度和相同的製造技術,結果就是產品品質不良,導致成本上升。[1] [2]

主流產品線

Radeon 9000 (RV250)與9700同時推出(ATI的新旗艦級產品)。這個晶片的紋理單元由兩個削減至一個,頂點單元由兩個削減至一個,亦取消了"TruForm"單元、階梯式Z快取。使核心配置成為4x1像素/紋理布局。除了功能被削減外,亦精煉起來。紋理緩衝亦加倍地提升至4KB,改善了R200的效率。正是由於這樣,它的效能都有一定的競爭性,考慮到"R200"核心是較昂貴、較大和較消耗電能。在遊戲中,它的性能與GeForce 4 MX440相當,它的優勢主要是由於能完整支援DirectX 8.1的頂點著色引擎和像素著色引擎。Radeon 9000在主流市場取代了毫無競爭力的Radeon 7500 (RV200)

Radeon R200 Radeon R200

後期的9000版本就是9200 (RV280),支援AGP-8X。但是,還有更便宜的版本,就是9200SE。9200SE的記憶體頻寬只有64-bit。另一個版本是Radeon 9250,於2004年夏季推出。它是9200的降頻版本。 它的核心與"RV280" GPU相同。它擁有的顯示記憶體通常比Radeon 9200多(128 MB甚至256 MB),充分利用當時低成本高密度的DDR SDRAM,這是當時普遍的趨勢。

流動性

衍生產品Mobility Radeon 9000於2002年初夏推出。它引起的催逼比桌面平台大,因為它是第一款支援DirectX 8的手提電腦顯示核心,在性能上遠勝過當時的對手(nVidia GeForce 2 Go),功能比GeForce 4 Go還多,而且採用了更先進的電源節省技術。它幫助ATI繼續保持其流動市場的估有率。發布幾天后,Mobility 9000的OEM版本已開始運送。後來,Mobility Radeon 9200推出,它是桌面平台9200的衍生產品。

型號

Sorted by model)

桌面平台顯示卡

形號 核心類型 晶粒製程 頻率 (MHz) 核心/顯存 核心配置1 填充率2

(Mpx/s:Mtx/s) 記憶體接口 記憶體頻寬 記憶體容量 注釋

8500 R200 150 納米 275/275 4x2:2 1100/2200 128-bit 8.8 GB/s 64/128 MB 128 MB版本支援記憶交插模式。

8500 LE R200 150 nm 250/250 4x2:2 1000/2000 128-bit 8.0 GB/s 64/128 MB 128 MB版本支援記憶交插模式。

8500 XT R200 150 nm 300/300 4x2:2 1200/2400 128-bit 9.6 GB/s 128 MB 從未推出,只有Gigabyte推出過300/300MHz版本

AIW 8500 DV R200 150 nm 230/190 4x2:2 920/1840 128-bit 6.1 GB/s 64/128 MB 128 MB版本支援記憶交插模式。

AIW 8500 R200 150 nm 275/275 4x2:2 1100/2200 128-bit 8.8 GB/s 128 MB 記憶交插模式。比"DV"版本更快更多功能

9000 RV250 150 nm 250/200 4x1:1 1000/1000 128-bit 6.4 GB/s 64/128 MB 不支援記憶交插模式

9000 PRO RV250 150 nm 275/275 4x1:1 1100/1100 128-bit 8.8 GB/s 64/128 MB

9100 R200 150 nm 250/250 4x2:2 1000/2000 128-bit 8.0 GB/s 64/128 MB 與8500LE相同,不支援記憶交插模式

9200 RV280 150 nm 250/200 4x1:1 1000/1000 128-bit 6.4 GB/s 64/128/256 MB RV280 = RV250 + AGP 8X

9200 SE RV280 150 nm 200/166 4x1:1 800/800 64-bit 2.7 GB/s 64/128 MB

9250 RV280 150 nm 240/200 4x1:1 960/960 128-bit 6.4 GB/s 64/128/256 MB

Mobility Radeons和整合式圖像處理器

MR9000 M9 150 nm ~250/~200 4x1:1 1000/1000 64-bit 3.2 GB/s 32 MB 流動版RV250。支援Powerplay電源管理技術。

MR9000 M9 150 nm ~250/~200 4x1:1 1000/1000 128-bit 6.4 GB/s 64/128 MB

MR9200 M9+ 150 nm ~250/~200 4x1:1 1000/1000 64-bit 3.2 GB/s 32 MB 流動版RV280。支援Powerplay電源管理技術。

MR9200 M9+ 150 nm ~250/~200 4x1:1 1000/1000 128-bit 6.4 GB/s 64/128 MB

9100 IGP RS300 150 nm 300/NA 2x1:0 600/600 128-bit NA NA Pentium 4平台的晶片組。基於RV250,但頂點運算文由CPU負責,利用系統記憶體作為顯核。

9100 PRO IGP RS350 150 nm 300/NA 2x1:0 600/600 128-bit NA NA 9100 IGP的最佳化版,改善了AGP 8X,和記憶體的速度和相容性。

9000 IGP RC350 150 nm 300/NA 2x1:0 600/600 64-bit NA NA 9100 IGP的廉價版,只支援單通道記憶體。

¹ 核心配置: 像素流水線/紋理拾取單元 : 頂點著色引擎

File:R8500boardpress.jpg

Radeon 8500 board² 填充率: Mpx/s = 每秒百萬像素。Mtx/s = 每秒百萬texel。

驅動程式

與UNIX有關的作業系統

ATI沒有為基於BSD的作業系統推出過任何驅動程式,但就為執行在Linux中的X Window System提供驅動程式。而基於PowerPC和Mac OS X作業系統的Mac mini和iBook G4就採用了Radeon 9200顯示卡。

一些Linux用家社區的分支,which prefer to avoid the IP-encumbered ATI drivers due to stability and long term maintainability reasons, still prefer the R200-based chips, as they are among the fastest modern video cards with stable open source drivers.

驅動程式

ATI的Catalyst Drivers支援所有R200以上的Radeon顯示卡,除了Windows XP x64,直至Catalyst 6.6推出。ATI亦提供舊有驅動程式,Catalyst 6.11則支援9250以下的Radeon顯示卡。

References

"ATi Radeon 8500 64 MB Review (Part 1)" by Dave Baumann, Beyond3D.Com, 2002年03月29日, retrieved 2006年01月14日

"ATi Radeon 8500 64 MB Review (Part 2)" by Dave Baumann, Beyond3D.Com, 2002年04月04日, retrieved 2006年01月14日

"ATI RADEON 9100 Based Graphics Cards Review: Gigabyte and PowerColor Solutions" by Tim Tscheblockov, X-Bit Labs, 2003年02月05日, retrieved 2006年01月09日

"ATI's Radeon 8500 & 7500: A Preview" by Anand Lal Shimpi, Anandtech, 2001年08月14日, retrieved 2006年01月09日

"ATI's Radeon 8500: She's got potential" by Anand Lal Shimpi, Anandtech, 2001年10月17日, retrieved 2006年01月09日

"ATI R200 Chip Details" by Beyond3D, retrieved 2006年01月09日

"ATI RV250 Chip Details" by Beyond3D, retrieved 2006年01月09日

"ATI RV280 Chip Details" by Beyond3D, retrieved 2006年01月09日

"How ATI's Radeon 8500 drivers 'optimize' Quake III" by Scott Wasson, The Tech Report, 2001年11月06日, retrieved 2006年06月01日

"Optimizing or Cheating Radeon 8500 Drivers" by Kyle Bennett, HardOCP, 2001年10月23日, retrieved 2006年06月01日

相關詞條

熱門詞條

聯絡我們