定義
一個正整數的 階乘(英語: factorial)是所有小於及等於該數的正整數的積,並且有0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。
![階乘函式](/img/e/2fd/nBnauM3X1ETNyYjNyYTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。
階乘亦可定義於整個實數(負整數除外),其與伽瑪函式的關係為:
![階乘函式](/img/d/95d/nBnauM3X3EDMyAzM3ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![階乘函式](/img/f/44c/nBnauM3X0MDNwMDMzgzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL4MzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
n!可質因子分解為 ,如6!=2×3×5。
計算
![階乘函式](/img/f/693/nBnauM3XxEzNycjN5kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
計算n!時,當n不太大時,普通的科學計算機都可以計算,能夠處理不超過 數值的計算機可以計算至69!。
![階乘函式](/img/e/608/nBnauM3X1IjM5YDN4MTNxMzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL3QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
當n很大時,可以用斯特林公式估計:
更精確的估計是:
![階乘函式](/img/8/fb4/nBnauM3XzUTN5gjN4MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL1UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![階乘函式](/img/2/1ed/nBnauM3XzQzN4gzN0czMxMzM1UTM1QDN5MjM5ADMwAjMwUzL3MzL4MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
其中
變化
定義擴展
階乘的定義可推廣到複數,其與伽瑪函式的關係為:
![階乘函式](/img/9/016/nBnauM3X0cDOxUjM0EzNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLwczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![階乘函式](/img/2/197/nBnauM3X1YDNwcDO2cDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL3AzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
伽瑪函式滿足 。
遞進/遞降階乘
![階乘函式](/img/9/bee/nBnauM3XzMzMzkDM3EzNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxczL4YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
遞進階乘:
![階乘函式](/img/2/abd/nBnauM3XyEzMzQDOzkDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL5AzL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
遞降階乘:
![階乘函式](/img/a/4e3/nBnauM3X1QTO1EjM5YTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL2kzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
雙階
![階乘函式](/img/a/f95/nBnauM3XzEjN1QTO4MTNxMzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL3UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![階乘函式](/img/2/0af/nBnauM3X4QTN3cDMyEDOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLyQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
表示雙階乘,其定義為:
![階乘函式](/img/d/b48/nBnauM3XxcTN2gDMyEDOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLzUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
廣義的雙階乘
無視上述定義的n!!因為即使值的N,雙階乘為奇數可擴展到最實數和複數z的注意到,當z是一個正的奇數則:
![階乘函式](/img/5/afa/nBnauM3XzATO1UDO4gzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL1EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
z!!定義為所有複數除負偶數。
![階乘函式](/img/c/cf5/nBnauM3X4ETN0MjNxATOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwkzL0UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![階乘函式](/img/6/386/nBnauM3XzAjNxITO2QDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL4czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
使用它的定義,半徑為R的n維超球其體積可表示為: n=1,3,5,... n=2,4,6,...
多重階乘
![階乘函式](/img/1/6b8/nBnauM3XycDM0UTMxQzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL0czLyUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
被稱為n的k重階乘,定義為:
![階乘函式](/img/c/402/nBnauM3X3MTO3QTO0cjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL2QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
廣義的多重階乘
能將 多重階乘推廣到複數(甚至是四元數):
![階乘函式](/img/9/f3d/nBnauM3XwEDN1MzN3gjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
hyper階乘
hyper階乘(hyperfactorial有時譯作 過度階乘)寫作H(n),其定義為:
![階乘函式](/img/5/b6e/nBnauM3XxMDN4cjM3gDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL4gzL1YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
hyper階乘和階乘差不多,但產生更大的數。hyper階乘的增長速度卻並非跟一般階乘在大小上相差很遠。 前幾項的hyper階乘為:
1,4,108, 27648, 86400000, ...
超級階乘
1995年,尼爾·斯洛恩和西蒙·普勞夫定義了超級階乘(superfactorial)為首n個階乘的積。一般來說
![階乘函式](/img/e/7fa/nBnauM3XyIDN3IDNykjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL2QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
自然數階冪
![階乘函式](/img/f/4f7/nBnauM3X2QDM4kDOxATOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwkzL0YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
階冪也稱 疊冪或者 重冪記作 (感嘆號!寫在自然數的右上角),它的定義是將自然數1至n的數由大到小作冪指數重疊排列,數學定義如下:
![階乘函式](/img/c/cb9/nBnauM3X2YzNxgjN5EzNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxczL0EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
其中n ≥ 1,前幾項的重冪數為:
1 , 2 , 9 , 262144 , ...
第5個重冪數是一個有183231位阿拉伯數字組成的超大自然數。
二次階冪:
![階乘函式](/img/f/b46/nBnauM3X2IjNyYTM5EjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
相應地,m次階冪定義如下:
![階乘函式](/img/3/73c/nBnauM3X4gDO4QTMxMTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzLxIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![階乘函式](/img/5/3a1/nBnauM3X0gTOxEDOxQzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL3czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中n,m≥1,且n,m。