簡介
貝特朗判別法是判斷正項級數收斂與發散的一種方法。
![貝特朗判別法](/img/1/578/wZwpmLwIzN1cTO4MzMxUTN1UTM1QDN5MjM5ADMwAjMwUzLzMzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![貝特朗判別法](/img/9/816/wZwpmL4UTM3QTN4gzNxUTN1UTM1QDN5MjM5ADMwAjMwUzL4czLzYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/6/41a/wZwpmL4MjN0kjM2gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/1bb/wZwpmL2AzN0YzMyITM0YTN1UTM1QDN5MjM5ADMwAjMwUzLyEzL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/6/41a/wZwpmL4MjN0kjM2gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設。若,則級數 收斂;若,則 發散。
這是由貝特朗 (Bertrand,J.L.F.) 於 1842 年建立的。
正項級數收斂性判別
部分和數列判別法
![貝特朗判別法](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/3/d1e/wZwpmLzUTO1UzM3kzNzYTN1UTM1QDN5MjM5ADMwAjMwUzL5czLwgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
正項級數的部分和數列是單調增加的數列即:,收斂的充要條件是有界,因此有:
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/0/a26/wZwpmL1MDO4YjM5cTO4kzM0UTMyITNykTO0EDMwAjMwUzL3kzL3IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/a/e3f/wZwpmL1AzN1kDO3ATMwEDN0UTMyITNykTO0EDMwAjMwUzLwEzL4UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/b/81a/wZwpmL4EzM5EzM3UDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL1AzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
正項級數收斂的充要條件是:它的部分和數列有界,即存在某正數,對於一切正整數有。
比較原則
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/2/469/wZwpmLxMzM3YDNzIDOxUTN1UTM1QDN5MjM5ADMwAjMwUzLygzLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/fed/wZwpmLzMDO1ADO4QzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL2IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/2/3a3/wZwpmLxUzMzgDN0cTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL3EzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/0/3e4/wZwpmL1QjN2YTM5YzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設和是兩個正項級數,如果存在某正數,使得對一切都有,則有:
![貝特朗判別法](/img/2/469/wZwpmLxMzM3YDNzIDOxUTN1UTM1QDN5MjM5ADMwAjMwUzLygzLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(1)若級數收斂,則級數也收斂;
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/2/469/wZwpmLxMzM3YDNzIDOxUTN1UTM1QDN5MjM5ADMwAjMwUzLygzLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)若級數發散,則級數也發散。
比式判別法(達朗貝爾判別法)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/6/5fc/wZwpmLzEjM2MzNykTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL5EzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/e/679/wZwpmL3MTM5UjMxEzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLxczLxQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
設為正項級數,且存在某正常數及常數。
![貝特朗判別法](/img/f/26a/wZwpmLxMDMwcjMxUTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/0/970/wZwpmL4ADM1cTMwQTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLxEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(1)若對一切,成立不等式,則級數收斂;
![貝特朗判別法](/img/f/26a/wZwpmLxMDMwcjMxUTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/5/4c8/wZwpmLxUDO0kDM2MzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLzczL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)若對一切,成立不等式,則級數發散。
比式判別法的極限形式:
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/48b/wZwpmL1MjNxcDO1UDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL1gzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設為正項級數,且,則有:
![貝特朗判別法](/img/c/450/wZwpmL3ATN4cjN2EzNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(1)當時,級數收斂;
![貝特朗判別法](/img/0/229/wZwpmLxcjNxkTM5gTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/5/693/wZwpmLyITM1ATO5UzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL1czL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)當或時,級數發散。
![貝特朗判別法](/img/5/4f5/wZwpmL4MDM2IDM4ITOwMzM1UTM1QDN5MjM5ADMwAjMwUzLykzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/b/26a/wZwpmLygDOyYTOxcjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/a/1da/wZwpmLzQDO2ADN3IzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLyczL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/7/d10/wZwpmL4MDO1YTOyUDNxUTN1UTM1QDN5MjM5ADMwAjMwUzL1QzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/b/26a/wZwpmLygDOyYTOxcjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/a/1da/wZwpmLzQDO2ADN3IzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLyczL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注意:若,這時用比式判別法不能對級數的斂散性做出判別,因為它可能是收斂的,也可能是發散的,例如級數和,他們的比式極限都是,但是收斂的,卻是發散的。
根式判別法(柯西判別法)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/6/5fc/wZwpmLzEjM2MzNykTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL5EzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/f/513/wZwpmLyEDOygTNzAzMyADN0UTMyITNykTO0EDMwAjMwUzLwMzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設為正項級數,且存在某正常數及正常數。
![貝特朗判別法](/img/f/26a/wZwpmLxMDMwcjMxUTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/9/6fe/wZwpmLyIjNxYjM4gTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL1QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(1)若對一切,成立不等式,則級數收斂;
![貝特朗判別法](/img/f/26a/wZwpmLxMDMwcjMxUTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/4/6b3/wZwpmLxQjN0kjN5QDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL4YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)若對一切,成立不等式,則級數發散;
柯西判別法的極限形式:
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/9/61b/wZwpmLzYDO1YDNygjMxMzM1UTM1QDN5MjM5ADMwAjMwUzL4IzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/e/554/wZwpmLwUDO0MTO5MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzLyMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設
為正項級數,且,則:(1)當時,級數收斂;
![貝特朗判別法](/img/4/529/wZwpmL2AzM1ITN1MTOxMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzLzAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/8/8bd/wZwpmL2EjMzUTNxETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)當,級數發散。
![貝特朗判別法](/img/6/c42/wZwpmL3EDNykjMxAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/b/26a/wZwpmLygDOyYTOxcjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/a/1da/wZwpmLzQDO2ADN3IzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLyczL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/d/9b8/wZwpmLyADMwQDM4MTM0YTN1UTM1QDN5MjM5ADMwAjMwUzLzEzLxUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/b/26a/wZwpmLygDOyYTOxcjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL3IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/a/1da/wZwpmLzQDO2ADN3IzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLyczL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注意:若,這時用根式判別法不能對級數的斂散性做出判別,因為它可能是收斂的,也可能是發散的,例如級數和,他們的比式極限都是,但是收斂的,卻是發散的。
積分判別法
積分判別法是利用非負函式的單調性和積分性質,並以反常積分為比較對象來判斷正項級數的斂散性。
![貝特朗判別法](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/4/8a3/wZwpmLxMjN1QTM2YDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL2QzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/0/267/wZwpmLwEDN5kDN0MzNxUTN1UTM1QDN5MjM5ADMwAjMwUzLzczL2EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![貝特朗判別法](/img/e/0fb/wZwpmL2AjN2YTO3ADNxUTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設為上非負減函式,那么正項級數與反常積分同時收斂或同時發散。