液用流量計

液用流量計

液用流量計-----又稱超音波流量計。超音波在流動的流體中傳播時就載上流體流速的信息。因此通過接收到的超音波就可以檢測出流體的流速,從而換算成流量。

超音波流量計超音波流量計
起聲波流量計是近十幾年來隨著積體電路技術迅速發展才開始套用的一種
非接觸式儀表,適於測量不易接觸和觀察的流體以及大管徑流量。它與水位計聯動可進行敞開水流的流量測量。使用超音波流量比不用在流體中安裝測量元件故不會改變流體的流動狀態,不產生附加阻力,儀表的安裝及檢修均可不影響生產管線運行因而是一種理想的節能型流量計。
眾所周知,目前的工業流量測量普遍存在著大管徑、大流量測量困難的問題,這是因為一般流量計隨著測量管徑的增大會帶來製造和運輸上的困難,造價提高、能損加大、安裝不僅這些缺點,超音波流量計均可避免。因為各類超音波流量計均可管外安裝、非接觸測流,儀表造價基本上與被測管道口徑大小無關,而其它類型的流量計隨著口徑增加,造價大幅度增加,故口徑越大超音波流量計比相同功能其它類型流量計的功能價格比越優越。被認為是較好的大管徑流量測量儀表,都卜勒法超音波流量計可測雙相介質的流量,故可用於下水道及排污水等髒污流的測量。在發電廠中,用攜帶型超音波流量計測量水輪機進水量、汽輪機循環水量等大管徑流量,比過去的皮脫管流速計方便得多。超聲被流量汁也可用於氣體測量。管徑的適用範圍從2cm到5m,從幾米寬的明渠、暗渠到500m寬的河流都可適用。
另外,超聲測量儀表的流量測量準確度幾乎不受被測流體溫度、壓力、粘度、密度等參數的影響,又可製成非接觸及攜帶型測量儀表,故可解決其它類型儀表所難以測量的強腐蝕性、非導電性、放射性及易燃易爆介質的流量測量問題。另外,鑒於非接觸測量特點,再配以合理的電子線路,一台儀表可適應多種管徑測量和多種流量範圍測量。超音波流量計的適應能力也是其它儀表不可比擬的。超音波流量計具有上述一些優點因此它越來越受到重視並且向產品系列化、通用化發展,現已製成不同聲道的標準型、高溫型、防爆型、濕式型儀表以適應不同介質,不同場合和不同管道條件的流量測量。
超音波流量計目前所存在的缺點主要是可測流體的溫度範圍受超音波換能鋁及換能器與管道之間的耦合材料耐溫程度的限制,以及高溫下被測流體傳聲速度的原始數據不全。目前我國只能用於測量200℃以下的流體。另外,超音波流量計的測量線路比一般流量計複雜。這是因為,一般工業計量中液體的流速常常是每秒幾米,而聲波在液體中的傳播速度約為1500m/s左右,被測流體流速(流量)變化帶給聲速的變化量最大也是10-3數量級.若要求測量流速的準確度為1%,則對聲速的測量準確度需為10-5~10-6數量級,因此必須有完善的測量線路才能實現,這也正是超音波流量計只有在積體電路技術迅速發展的前題下才能得到實際套用的原因。
超音波流量計由超音波換能器、電子線路及流量顯示和累積系統三部分組成。超音波發射換能器將電能轉換為超音波能量,並將其發射到被測流體中,接收器接收到的超音波信號,經電子線路放大並轉換為代表流量的電信號供給顯示和積算儀表進行顯示和積算。這樣就實現了流量的檢測和顯示。
超音波流量計常用壓電換能器。它利用壓電材料的壓電效應,採用適出的發射電路把電能加到發射換能器的壓電元件上,使其產生超音波振勸。超音波以某一角度射入流體中傳播,然後由接收換能器接收,並經壓電元件變為電能,以便檢測。發射換能器利用壓電元件的逆壓電效應,而接收換能器則是利用壓電效應。
超音波流量計換能器的壓電元件常做成圓形薄片,沿厚度振動。薄片直徑超過厚度的10倍,以保證振動的方向性。壓電元件材料多採用鋯鈦酸鉛。為固定壓電元件,使超音波以合適的角度射入到流體中,需把元件故人聲楔中,構成換能器整體(又稱探頭)。聲楔的材料不僅要求強度高、耐老化,而且要求超音波經聲楔後能量損失小即透射係數接近1。常用的聲楔材料是有機玻璃,因為它透明,可以觀察到聲楔中壓電元件的組裝情況。另外,某些橡膠、塑膠及膠木也可作聲楔材料。
超音波流量計的電子線路包括發射、接收、信號處理和顯示電路。測得的瞬時流量和累積流量值用數字量或模擬量顯示。
根據對信號檢測的原理,目前超音波流量計大致可分傳播速度差法(包括:直接時差法、時差法、相位差法、頻差法)波束偏移法、都卜勒法、相關法、空間濾波法及噪聲法等類型,如圖所示。其中以噪聲法原理及結構最簡單,便於測量和攜帶,價格便宜但準確度較低,適於在流量測量準確度要求不高的場合使用。由於直接時差法、時差法、頻差法和相位差法的基本原理都是通過測量超音波脈衝順流和逆流傳報時速度之差來反映流體的流速的,故又統稱為傳播速度差法。其中頻差法和時差法克服了聲速隨流體溫度變化帶來的誤差,準確度較高,所以被廣泛採用。按照換能器的配置方法不同,傳播速度差撥又分為:Z法(透過法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用超音波束在流體中的傳播方向隨流體流速變化而產生偏移來反映流體流速的,低流速時,靈敏度很低適用性不大.都卜勒法是利用聲學都卜勒原理,通過測量不均勻流體中散射體散射的超音波多普
勒頻移來確定流體流量的,適用於含懸浮顆粒、氣泡等流體流量測量。相關法是利用相關技術測量流量,原理上,此法的測量準確度與流體中的聲速無關,因而與流體溫度,濃度等無關,因而測量準確度高,適用範圍廣。但相關器價格貴,線路比較複雜。在微處理機普及套用後,這個缺點可以克服。噪聲法(聽音法)是利用管道內流體流動時產生的噪聲與流體的流速有關的原理,通過檢測噪聲表示流速或流量值。其方法簡單,設備價格便宜,但準確度低。
以上幾種方法各有特點,應根據被測流體性質.流速分布情況、管路安裝地點以及對測量準確度的要求等因素進行選擇。一般說來由於工業生產中工質的溫度常不能保持恆定,故多採用頻差法及時差法。只有在管徑很大時才採用直接時差法。對換能器安裝方法的選擇原則一般是:當流體沿管軸平行流動時,選用Z法;當流動方向與管鈾不平行或管路安裝地點使換能器安裝間隔受到限制時,採用V法或X法。當流場分布不均勻而表前直管段又較短時,也可採用多聲道(例如雙聲道或四聲道)來克服流速擾動帶來的流量測量誤差。都卜勒法適於測量兩相流,可避免常規儀表由懸浮粒或氣泡造成的堵塞、磨損、附著而不能運行的弊病,因而得以迅速發展。隨著工業的發展及節能工作的開展,煤油混合(COM)、煤水泥合(cwm)燃料的輸送和套用以及燃料油加水助燃等節能方法的發展,都為都卜勒超音波流量計套用開闢廣闊前景。
流量計的種類很多,一般市場上用得比較廣泛的有:電磁流量計、渦街流量計、渦輪流量計、孔板流量計、V錐流量計、金屬轉子流量計、玻璃轉子流量計、鏇進鏇渦流量計橢圓齒輪流量計均速管流量計、超音波流量計等。它們的安裝條件對直管段的要求V錐流量計是最低,而電磁、渦街、孔板等對直管段要求就較高,一般是前5D後3D,對於流量計前端有彎頭、閥門
等的直管段要求就更高,最高要求直管段是前50D後5D,因此在選購流量計時一定要考慮流量計現場安裝的環境、位置等因素,從而選擇更加適合現場工礦的流量計。
流量單位換算
流量單位換算
升/秒 米3/時 米3/分 英加侖/分 美加侖/分 英尺3/時 英尺3/分
L/s m3/h m3/min Imp.gal3/min U.S.gal3/min ft3/h ft3/min
L/s 1 3.6 0.06 13.197 15.8514 127.14 21.192
m3/h 0.2778 1 0.016668 3.6658 4.4032 35.317 0.58806
m3/min 16.666 60 1 219.98 264.1833 2119.183 35.3165
Imp.gal/min 0.075775 0.27279 0.0045465 1 1.2011 906342 0.16056
U.S.gal/min 0.06309 0.2271 0.0037824 0.8325 1 8.0208 0.17768
Ft3/h 0.007865 0.02832 0.0004719 0.1038 0.1247 1 0.016668
Ft3/min 0.47192 0.6989 0.02832 6.22787 7.4855 60

相關詞條

相關搜尋

熱門詞條

聯絡我們