簡介
水輪機及輔機是重要的水電設備是水力發電行業必不可少的組成部分,是充分利用清潔可再生能源實現節能減排、減少環境污染的重要設備,其技術發展與我國水電行業的發展規模相適應。在我國電力需求的強力拉動下,我國水輪機及輔機製造行業進入快速發展期,其經濟規模及技術水平都有顯著提高,我國水輪機製造技術已達世界先進水平。我國水輪機及輔機製造行業綜合實力明顯增加,全行業呈現出蓬勃發展、充滿活力的可喜局面,行業趨好的標誌表現在經濟運行質量的提高和經濟效益的顯著增長。2010年,我國水輪機及輔機製造行業規模以上(全年銷售收入在500萬元以上)企業68家,實現銷售收入44.70億元,同比增長2.35%;實現利潤總額3.23億元,同比增長4.16%。
2010年,我國水電裝機規模達到2.11億千瓦,新增核准水電規模1322萬千瓦,在建規模7700萬千瓦。根據我國對國際社會做出的“2020年非石化能源將達到能源總量15%”承諾,我國水電行業2020年裝機容量須達到3.8億千瓦。而即使按照我國公布的《可再生能源中長期發展規劃》,確定到2020年水電裝機容量要達到3億千瓦,國內11年內將新增單機容量50千瓦以上的大型水電機組近300台,每年平均新裝25台50萬千瓦及以上大型水電機組。若按2020年達到3.8億千瓦的裝機容量,我國所需的水輪機及輔機設備將進一步增加,我國水輪機及輔機行業發展前景廣闊。
發展過程
早期的衝擊式水輪機的水流在衝擊葉片時,動能損失很大,效率不高。1889年,美國工程師佩爾頓發明了水斗式水輪機,它有流線型的收縮噴嘴,能把水流能量高效率地轉變為高速射流的動能。水輪機之最(整個本段可以全部不要了,這段上面80%的都過時了,都被取代了。很老的資料了,參考價值不大,所以建議去除本段) 20世紀80年代初,世界上單機功率最大的水斗式水輪機裝於挪威的悉·西馬電站,其單機容量為315兆瓦,水頭885米,轉速為300轉/分,於1980年投入運行。水頭最高的水斗式水輪機裝於奧地利的賴瑟克山電站,其單機功率為22.8兆瓦,轉速750轉/分,水頭達1763.5米,1959年投入運行。
80年代,世界上尺寸最大的轉槳式水輪機是中國東方電機廠製造的,裝在中國長江中游的葛洲壩電站,其單機功率為170兆瓦,水頭為18.6米,轉速為54.6轉/分,轉輪直徑為11.3米,於1981年投入運行。世界上水頭最高的轉槳式水輪機裝在義大利的那姆比亞電站,其水頭為88.4米,單機功率為13.5兆瓦,轉速為375轉/分,於1959年投入運行。
世界上水頭最高的混流式水輪機裝於奧地利的羅斯亥克電站,其水頭為672米,單機功率為58.4兆瓦,於1967年投入運行。功率和尺寸最大的混流式水輪機裝於美國的大古力第三電站,其單機功率為700兆瓦,轉輪直徑約9.75米,水頭為87米,轉速為85.7轉/分,於1978年投入運行。
世界上最大的混流式水泵水輪機裝於聯邦德國的不萊梅蓄能電站。其水輪機水頭237.5米,發電機功率660兆瓦,轉速125轉/分;水泵揚程247.3米,電動機功率700兆瓦,轉速125轉/分。世界上容量最大的斜流式水輪機裝於蘇聯的潔雅電站,單機功率為215兆瓦,水頭為78.5米。
分類
水輪機按工作原理可分為衝擊式水輪機和反擊式水輪機兩大類。衝擊式水輪機的轉輪受到水流的衝擊而鏇轉,工作過程中水流的壓力不變,主要是動能的轉換;反擊式水輪機的轉輪在水中受到水流的反作用力而鏇轉,工作過程中水流的壓力能和動能均有改變,但主要是壓力能的轉換。衝擊式水輪機
衝擊式水輪機按水流的流向可分為切擊式(又稱水斗式)和斜擊式兩類。斜擊式水輪機的結構與水斗式水輪機基本相同,只是射流方向有一個傾角,只用於小型機組。
理論分析證明,當水斗節圓處的圓周速度約為射流速度的一半時,效率最高。這種水輪機在負荷發生變化時,轉輪的進水速度方向不變,加之這類水輪機都用於高水頭電站,水頭變化相對較小,速度變化不大,因而效率受負荷變化的影響較小,效率曲線比較平緩,最高效率超過91%。
反擊式水輪機
綜述
反擊式水輪機可分為混流式、軸流式、斜流式和貫流式。在混流式水輪機中,水流徑向進入導水機構,軸向流出轉輪;在軸流式水輪機中,水流徑向進入導葉,軸向進入和流出轉輪;在斜流式水輪機中,水流徑向進入導葉而以傾斜於主軸某一角度的方向流進轉輪,或以傾斜於主軸的方向流進導葉和轉輪;在貫流式水輪機中,水流沿軸向流進導葉和轉輪。
軸流式、貫流式和斜流式水輪機按其結構還可分為定槳式和轉槳式。定槳式的轉輪葉片是固定的;轉槳式的轉輪葉片可以在運行中繞葉片軸轉動,以適應水頭和負荷的變化。
各種類型的反擊式水輪機都設有進水裝置,大、中型立軸反擊式水輪機的進水裝置一般由蝸殼、固定導葉和活動導葉組成。蝸殼的作用是把水流均勻分布到轉輪周圍。當水頭在40米以下時,水輪機的蝸殼常用鋼筋混凝土在現場澆注而成;水頭高於40米時,則常採用拼焊或整鑄的金屬蝸殼。
在反擊式水輪機中,水流充滿整個轉輪流道,全部葉片同時受到水流的作用,所以在同樣的水頭下,轉輪直徑小於衝擊式水輪機。它們的最高效率也高於衝擊式水輪機,但當負荷變化時,水輪機的效率受到不同程度的影響。
反擊式水輪機都設有尾水管,其作用是:回收轉輪出口處水流的動能;把水流排向下游;當轉輪的安裝位置高於下游水位時,將此位能轉化為壓力能予以回收。對於低水頭大流量的水輪機,轉輪的出口動能相對較大,尾水管的回收性能對水輪機的效率有顯著影響。
軸流式水輪機
適用於較低水頭的電站。在相同水頭下,其比轉數較混流式水輪機為高。
軸流定槳式水輪機的葉片固定在轉輪體上。一般安裝高度在3-50m。,葉片安放角不能在運行中改變,結構簡單,效率較低,適用於負荷變化小或可以用調整機組運行台數來適應負荷變化的電站。
軸流轉槳式水輪機是奧地利工程師卡普蘭在1920年發明的,故又稱卡普蘭水輪機。一般安裝高度在3-80m。其轉輪葉片一般由裝在轉輪體內的油壓接力器操作,可按水頭和負荷變化作相應轉動,以保持活動導葉轉角和葉片轉角間的最優配合,從而提高平均效率,這類水輪機的最高效率有的已超過94%。典型例子就是葛洲壩。
貫流式水輪機
的導葉和轉輪間的水流基本上無變向流動,加上採用直錐形尾水管,排流不必在尾水管中轉彎,所以效率高,過流能力大,比轉數高,特別適用於水頭為3~20米的低水頭小型河床電站。
這種水輪機裝在潮汐電站內還可以實現雙向發電。這種水輪機有多種結構,使用最多的是燈泡式水輪機。
燈泡式機組的發電機裝在水密的燈泡體內。其轉輪既可以設計成定槳式,也可以設計成轉槳式。其中又可以細分為貫流式和半貫流式。世界上最大的燈泡式水輪機(轉槳式半貫流)裝在美國的羅克島第二電站,水頭12.1米,轉速為85.7轉/分,轉輪直徑為7.4米,單機功率為54兆瓦,於1978年投入運行。
混流式水輪機
是世界上使用最廣泛的一種水輪機,由美國工程師弗朗西斯於1849年發明,故又稱弗朗西斯水輪機。與軸流轉槳式相比,其結構較簡單,運行穩定,最高效率也比軸流式的高,但在水頭和負荷變化大時,平均效率比軸流轉槳式的低,這類水輪機的最高效率有的已超過95%。混流式水輪機適用的水頭範圍很寬,為5~700米,但採用最多的是40~300米。
混流式的轉輪一般用低碳鋼或低合金鋼鑄件,或者採用鑄焊結構。為提高抗汽蝕和抗泥沙磨損性能,可在易氣蝕部位堆焊不鏽鋼,或採用不鏽鋼葉片,有時也可整個轉輪採用不鏽鋼。採用鑄焊結構能降低成本,並使流道尺寸更精確,流道表面更光滑,有利於提高水輪機的效率,還可以分別用不同材料製造葉片、上冠和下環。典型例子是我國的劉家峽。
斜流式水輪機
是瑞士工程師德里亞於1956年發明,故又稱德里亞水輪機。其葉片傾斜的裝在轉輪體上,隨著水頭和負荷的變化,轉輪體內的油壓接力器操作葉片繞其軸線相應轉動。它的最高效率稍低於混流式水輪機,但平均效率大大高於混流式水輪機;與軸流轉槳水輪機相比,抗氣蝕性能較好,飛逸轉速較低,適用於40~120米水頭。
由於斜流式水輪機結構複雜、造價高,一般只在不宜使用混流式或軸流式水輪機,或不夠理想時才採用。這種水輪機還可用作可逆式水泵水輪機。當它在水泵工況啟動時,轉輪葉片可關閉成近於封閉的圓錐因而能減小電動機的啟動負荷。
發展史
水輪機是一種將水能轉換為機械能的動力機械。在大多數情況下,將這種機械能通過發電機轉換為電能,因此水輪機是為水能利用和發電服務的。水是人類在生活和生產中能依賴的最重要的自然資源之一,我們的祖先很早以前就和洪水開展了鬥爭並學會了利用水能。公園前二千多年的大禹治水,至今還為人們所稱頌。公元37年中國人發明了用水輪帶動的鼓風設備-水排,公元260-270年中國人創造了水碾,公元220-300年間發明了用水輪帶動的水磨,這些水力機械結構簡單,製造容易。缺點是笨重、出力小、效率低。真正大規模地對水力資源合理開發和利用,是在近代工業發展和有關發電、航運等技術發展以後。水利資源的綜合開發和利用,是指通過修建水利樞紐工程來進行對河流水力資源在防洪、灌溉、航運、發電以及水產等發明的綜合利用。我國的水電發展設備事業也是在新中國成立以後才有了蓬勃發展,1975年我國還只能自行設計製造7.5萬千瓦的新安江水電站,我國已能自行設計製造單機容量70萬千瓦的混流式水輪機發電機組及單機容量17萬千瓦的軸流轉槳式水輪發電機組。我國的水力設備的設計、製造水平已達到世界先進水平。我國設計、製造的水力發電設備遠銷到美國、加拿大、菲律賓、土耳其、南斯拉夫、越南等國,受到了這些國家的歡迎。
水輪機牌號
反擊式
混流式HL
轉流式ZZ
軸流式ZD
斜流式XL
貫流轉漿式GZ
貫流定漿式GD
衝擊式
水斗式CJ
斜擊式XJ
雙擊式SJ
套用
水泵水輪機主要用於抽水蓄能電站。在電力系統負荷低於基本負荷時,它可用作水泵,利用多餘發電能力,從下游水庫抽水到上游水庫,以位能形式蓄存能量;在系統負荷高於基本負荷時,可用作水輪機,發出電力以調節高峰負荷。因此,純抽水蓄能電站並不能增加電力系統的電量,但可以改善火力發電機組的運行經濟性,提高電力系統的總效率。50年代以來,抽水蓄能機組在世界各國受到普遍重視並獲得迅速發展。
早期發展的或水頭很高的抽水蓄能機組大多採用三機式,即由發電電動機、水輪機和水泵串聯組成。它的優點是水輪機和水泵分別設計,可各自具有較高效率,而且發電和抽水時機組的鏇轉方向相同,可以迅速從發電轉換為抽水,或從抽水轉換為發電。同時,可以利用水輪機來啟動機組。它的缺點是造價高,電站投資大。
斜流式水泵水輪機轉輪的葉片可以轉動,在水頭和負荷變化時仍有良好的運行性能,但受水力特性和材料強度的限制,到80年代初,它的最高水頭只用到136.2米(日本的高根第一電站)。對於更高的水頭,需要採用混流式水泵水輪機。
抽水蓄能電站設有上、下兩個水庫。在蓄存相同能量的條件下,提高揚程可以縮小庫容、提高機組轉速、降低工程造價。因此,300米以上的高水頭蓄能電站發展很快。世界上水頭最高的混流式水泵水輪機裝於南斯拉夫的巴伊納巴什塔電站,其單機功率為315兆瓦,水輪機水頭為600.3米;水泵揚程為623.1米,轉速為428.6轉/分,於1977年投入運行。
20世紀以來,水電機組一直向高參數、大容量方向發展。隨著電力系統中火電容量的增加和核電的發展,為解決合理調峰問題,世界各國除在主要水系大力開發或擴建大型電站外,正在積極興建抽水蓄能電站,水泵水輪機因而得到迅速發展。為了充分利用各種水力資源,潮汐、落差很低的平原河流甚至波浪等也引起普遍重視,從而使貫流式水輪機和其他小型機組迅速發展。
工作參數
水頭H(米)
連續水流兩斷面間單位能量的差值稱為水頭。水頭是水輪機的一個重要參數,它的大小直接影響著水輪機出力的大小和水輪機型式的選擇。
流量
單位時間內流經水輪機的水量(體積)稱為水輪機的流量,用Q表示。通常用立方米/秒為單位。
出力
單位時間內流經水輪機的水流所具有的能量,稱為通過水輪機的“水流的出力”,用Np^0表示。Np^0=9.81QH(千瓦)。
效率
水輪機的出力N通過水輪機水流的出力Np^0之比,稱為水輪機的效率,用η表示。顯然效率是表面水輪機對水流能量的有效利用程度,是一個無量綱的物理量,用百分數(%)表示。
轉速
水輪機主軸在單位時間內的鏇轉次數,稱為水輪機的轉速,用n表示,通常採用“轉/分”作單位。