有理數集

有理數集

有理數集,是數學中的專業術語,指全體有理數構成一個集合,用字母Q表示。

表示的由來

由於兩個數相比的結果(商)叫做有理數,商英文是quotient,所以就用Q了

分析

有理數集是一個域,即在其中可進行四則運算(0作除數除外),而且對於這些運算,以下的運算律成立(a、b、c等都表示任意的有理數):

①加法的交換律 a+b=b+a;

②加法的結合律 a+(b+c)=(a+b)+c;

③存在數0,使 0+a=a+0=a;

④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0;

⑤乘法的交換律 ab=ba;

⑥乘法的結合律 a(bc)=(ab)c;

⑦分配律 a(b+c)=ab+ac;

⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a;

⑨對於不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。

⑩0a=0 文字解釋:一個數乘0還於0。

此外,有理數是一個序域,即在其上存在一個次序關係≤。

相關詞條

熱門詞條

聯絡我們