基本介紹
![有向單形](/img/c/5ed/wZwpmL1QjN0YDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLyEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/d/3f9/wZwpmLwgzM2MzM4gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/2/e97/wZwpmLwUDOxEDN1MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/2/020/wZwpmL3EjM4cTO5IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL0UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/e/0e9/wZwpmLwMDM0YzMyIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL0MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/9/f36/wZwpmL1UDN5EjMwUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL4YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/9/f36/wZwpmL1UDN5EjMwUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL4YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
一個 維單形 ,它的 個頂點有 個不同次序的排列,當 時,這些排列可分成兩組,同組的任意兩個排列相差偶數個對換,不同組的任意兩個排列相差奇數個對換,這兩組排列稱為單形 的兩個定向。換言之,根據頂點次序是奇排列還是偶排列分成兩組,稱為 的兩個定向,並且稱為互為相反的定向。
![有向單形](/img/e/483/wZwpmL1UDNwATNzIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/e/30f/wZwpmLygzM0cjNyQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/9/f36/wZwpmL1UDN5EjMwUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL4YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/a/58a/wZwpmLzcTN5ADN0IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLzQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/3/9e8/wZwpmLzETNwQjNzkjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/8/e86/wZwpmL0ATOyMzMxIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL4UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/4/e73/wZwpmL2czN1QDOyUjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL4czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/1/8fd/wZwpmL1IzN4YjMxMTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
指定一個定向的單形稱為 有向單形。例如,排列 與 就確定了 的兩個相反定向,相應的兩個有向單形分別記為 與 ,若把一個記為 ,則另一個就記為 ,對於零維單形只有一個頂點,為統一起見用 表示它的兩個定向,有向單形在 時分別是有向線段和有向三角形。為區別起見,原來的單形可稱為 無向單形。單純復形是幾何對象,而群是代數對象,從復形過渡到它的同調群,關鍵是單形的定向與邊緣運算元這兩個概念 。
相關定義與定理
![有向單形](/img/7/3ab/wZwpmL4QTN0cTN0QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/8/0d6/wZwpmL2IDO1kDO2IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/1/f54/wZwpmL4cjNzEjM3IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設 是 R 中的點,若 具有線性關係,則說明這一組點占有最廣的位置。當 時就是一個點,自然此點占有最廣位置 。
單純形
![有向單形](/img/e/30f/wZwpmLygzM0cjNyQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/2/e97/wZwpmLwUDOxEDN1MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/2/5e0/wZwpmL4gTNyIDO3kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL1EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設 是 R 中占有最廣位置的 點,而 ,則我們稱點 的集合
![有向單形](/img/b/829/wZwpmL3ETMwYjM2kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL2AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/e/30f/wZwpmLygzM0cjNyQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/a/be0/wZwpmLxEjM2cDNzQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLwAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
為 q維 單純形,簡稱 q維單形, 稱為 頂點,故常將 記作 ,而係數 稱為此單純形的 重心坐標。
![有向單形](/img/5/dfc/wZwpmL2ADN3UTNxQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/2/e97/wZwpmLwUDOxEDN1MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/0/d49/wZwpmLycjM4gDMwIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL4MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/e/fe9/wZwpmLxEDN0cjM1UTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL0UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/4/fad/wZwpmLxMjMzAzN3QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/6/cb2/wZwpmLwUjM4UTO5ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定義 對於q維單形 ,稱 的( )個頂點中的 個點 所構成的 維單形 為 的一個r維面, 的0維面就是頂點,把1維面稱為棱。
![有向單形](/img/1/b90/wZwpmL1AzM0MDOxMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/9/b93/wZwpmL2ADM4AzM0IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLzMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/a/b09/wZwpmL1IjN1MjMyIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
例1 考慮3維單形,對於點,就有,
![有向單形](/img/3/224/wZwpmL1gjM2QjM3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/7/a27/wZwpmL3MTN1gDMzIDN3UzM1UTM1QDN5MjM5ADMwAjMwUzLyQzL4gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/b/570/wZwpmLwUzN4EjMzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czLzIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/8/71f/wZwpmLxAjNyYDO1cjNyYDM1UTM1QDN5MjM5ADMwAjMwUzL3YzLwczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/1/762/wZwpmL2gzM4kDN2MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例如,維面,為棱,為面,為體,如圖1所示。
![圖1 3維單形(四面體)](/img/c/1e1/wZwpmLwUDMxIjMxYDO0YzM1UTM1QDN5MjM5ADMwAjMwUzL2gzLxYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
有向單形與無向單形
![有向單形](/img/e/0e9/wZwpmLwMDM0YzMyIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL0MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/2/e97/wZwpmLwUDOxEDN1MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/2/020/wZwpmL3EjM4cTO5IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL0UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/4/5df/wZwpmL2UDM2cTN0MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL3MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/5/027/wZwpmL0QjM4cjMxIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL4EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/8/f3e/wZwpmL1gDN1UTOwMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLxgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/e/30f/wZwpmLygzM0cjNyQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/8/e86/wZwpmL0ATOyMzMxIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL4UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/3/603/wZwpmL1QDO0cjNyUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
當 時, 的 點有 個排列,它們決定同一個 ,這樣的單形 被稱為 無向單形,在 排列中,有一半是偶置換,一半是奇置換,因而這兩個置換等價類構成了 兩個定向,指定一個定向單形稱為 有向單形,簡記“”=,這裡指頂點次序為的有向單形;另一個定向單形記作“”=,以單純形作為構件,可以組成單純複合形、多面體和鏈。
單純複合形(復形)
![有向單形](/img/3/717/wZwpmLwgDOzQzNwMTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLxgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/0/ddf/wZwpmLwgjMyYjM4ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
如果或是一個公共面,則單形和是 規則相處的,如圖2所示,否則是 不規則相處的,如圖,3所示。
![圖2 規則相處](/img/b/93f/wZwpmLwEDM1EDO4EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![圖3 不規則相處](/img/6/e84/wZwpmLxMDM0AzN0IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL1UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
設W是 R 中有限個單形集合,如果W滿足下列兩個條件:
![有向單形](/img/d/d59/wZwpmL2QjM4MTM3YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL0QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(1)如果,的任一面也屬於W;
![有向單形](/img/0/ddf/wZwpmLwgjMyYjM4ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(2)W的任意兩個單形和規則相處,
則稱W為 單純複合形,簡稱為 復形,如圖4所示;否則是 非復形,如圖5所示。
![圖4 復形](/img/7/119/wZwpmL4UTMxQDO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLyMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![圖5 非復形](/img/1/bbe/wZwpmLxUDM0AzNwkTO0YzM1UTM1QDN5MjM5ADMwAjMwUzL5kzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
有向單形的基本組
設W是一個n維復形,它的全體無向單形
![有向單形](/img/7/814/wZwpmL0EzMzgTMxUjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/4/b9d/wZwpmLxIDN1ATN3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
都己任意地規定了一個定向,這裡為W中q維單形的個數,這樣,得到一組有向單形
![有向單形](/img/0/330/wZwpmLycjNxYTN5QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czLwIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
上式稱為W的 有向單形的基本組。
鏈
![有向單形](/img/6/f31/wZwpmL3EDO5QDOyAzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczL0EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/0/894/wZwpmL2EjN2QDN4QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czLwIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
設為n維復形W的一個基本組,對於,形式地定義
![有向單形](/img/0/66d/wZwpmL2AjNwQTMwMDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzLzUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/d/0f9/wZwpmLwMDO2ETNzkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
稱為W的一個 q維鏈。
1維鏈可看作是有向的折線 。
鏈邊界
![有向單形](/img/4/0db/wZwpmLyIjN0cDMzQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
如果把邊界運算元擴展到有向單形和復形上去,則有下面的鏈邊界。
![有向單形](/img/a/bd8/wZwpmL4cjNxUjNxkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/d/65c/wZwpmL0ITNxcTMzIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL1gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/7/f04/wZwpmLxczM1ADN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定義 對於任意q維有向單形,我們定義()維鏈:
![有向單形](/img/4/ac7/wZwpmLxETM0IjNzYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL0gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/6/eb8/wZwpmL1MzNxAjMzcjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLwIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/0/ce6/wZwpmL4IzNzkTM3IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/a/ca4/wZwpmL1IjM1YDMykzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/8/3ca/wZwpmL2UTO0cTNyYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL1czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![有向單形](/img/4/0db/wZwpmLyIjN0cDMzQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/6/e3f/wZwpmLzIjM2EjM3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![有向單形](/img/d/0f9/wZwpmLwMDO2ETNzkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
稱之為的 邊界鏈或簡稱 邊界。式中表示缺這一點,也可以把擴展到W的q維鏈上去,定義W的任意q維鏈的邊界為
![有向單形](/img/5/ea0/wZwpmL2MTMwYTMzMDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzLzUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![有向單形](/img/4/0db/wZwpmLyIjN0cDMzQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![有向單形](/img/7/b08/wZwpmLwgTOyUjNxkjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![有向單形](/img/a/b04/wZwpmL4ETN1EzM5EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLzAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
由此可見,邊界運算元建立了鏈群到的一個同態 :
![有向單形](/img/1/4a0/wZwpmLzQjM3QTN0IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)