新州悖論

新州悖論。設有一個新的州加人了美利堅合眾國(這在美國歷史上發生過數十次),則總人口增加,相應地眾議院席位也有所增加。

基本簡介

新州悖論。設有一個新的州加人了美利堅合眾國(這在美國歷史上發生過數十次),則總人口增加,相應地眾議院席位也有所增加。這時原來某個州失去了一個席位,而另一個州增加了一席,雖然原來所有州的人口都沒有發生變化,這種情況被稱為新州悖論。

相關背景

1.由來

根據美國憲法,美國國會分參議院和眾議院,參議院中各州有等額議席,而眾議院“議員名額……將根據各州的人口比例分配”。這就是名額分配問題的緣起。美國憲法於1787年獲得通過,1788年生效,但從1790年以來的200多年間,怎樣操作才算公正、合理地按這一原則分配好名額,一直是美國政治家以及許多介人其中的科學家研究和爭議的問題。人們創立了許多方法,但沒有一種方法得到公認。

把這個問題數學化,則可作如下探討:設美國一共有s個州,眾議院一共設有h個議員席位。再設第i州有人口pi(i=1, 2,…, s),則全國總人口有P=p1+p2+…+ps,第i州的人口占全國總人口的比例為pi/P 。按上述憲法原則,第i州應有h*pi/P個議員名額,記為qi=h*pi/P,qi稱之為第i州的“份額”,則顯然有

q1+q2+…+qs=h。

但是一般地,qi不是整數,而議員名額卻必須是整數。怎么辦?這就是名額分配問題的癥結所在。

用“四捨五入法”或“去尾法”或“進一法”對q‘取整數,都不行,因為這就會出現或者名額不夠,或者名額剩餘。

既然不能通過簡單的對份額取整完成名額分配,問題就成為:在眾議院席位數h,州數s,各州人口數pi(i=1, 2, 3,…, s)給定的條件下,求出各州的份額qi(i=1, 2,…, s)後,如何找出相應的一組整數a1,a2,…,as,使得

a1+a2+…+as=h,

讓第i州取得a i(i=1, 2, 3,…, s)個議員名額,並且“儘可能地”滿足美國憲法所規定的“按人口比例分配”的原則?這就是“名額分配問題”。從數學上說,稍加解釋,小學生也可明白,但其求解卻難倒了眾多的政治家和數學家!

2.方法

美國第一任總統喬治·華盛頓時代的財政部長亞歷山大·漢密爾頓首先於1790年提出了解決名額分配問題的一種方法,1792年被美國國會通過,稱之為漢密爾頓方法。

這一方法規定如下操作程式:

(1)取各州的份額qi的整數部分[qi](如qi=1.5,[qi]=1;qk=0.82,[qk]=0),先讓第i州擁有[qi]個議員名額。

(2)再看各州份額qi的小數部分。按從大到小的順序,把餘下的議員名額逐個分配給各相應的州,分完為止。具體做法是:小數部分(qi一[qi])最大的州優先取得餘下名額中的一個,小數部分次大的州取得再餘下的名額中的一個……直到名額分完為止。

漢密爾頓方法看起來是相當公正、合理的,但它於1792年被美國國會通過後並未能馬上付諸實施。最先採用的是傑斐遜的方法。

傑斐遜方法是一種“除子方法”。在前面我們談問題的緣起時指出,問題的關鍵是:雖然有q1+q2+…+qs=h,但對qi以某種方式取整[qi]後,[q1]+[q2]+…十[qs]就不一定等於h了。傑斐遜認識到qi只有相對的意義,而不具有絕對的意義,因而,用一個正數λ去除所有的qi,得到 ,用 代替原來的qi,其對相應的第i州來說表示“份額”的意義不變。這樣如果選取適當的λ,使 在某種取整數的方法(如四捨五入法、去尾法、進一法等)下得到的整數[ ]加起來後恰好等於h,則可把ai=[ ]作為第i州應得的議員名額。由於用正數λ除後才得出名額的,所以叫做“除子方法”。如果用“去尾法”取得整數[ ],就叫做傑斐遜法。

傑斐遜法也有令人不能接受的地方。那就是它不能符合所謂“公平分攤”的原則。這個原則是:按常理,對某一個非整數份額qi,它所取的名額數ai應滿足[qi]<ai<[qi]+1(其中方括弧僅表示用去尾法取整數)。但採用傑斐遜法,可產生“例外”,例如s=3,h=5,而q1=0.6, q2=0.5,q3=3.9,則顯然有q3<4,按“原則”,應有3<a3<4,但按傑斐遜法,取x=0.7,則有al=[ ]=0,a2=[ ]=0, a3=[ ]=5。

這種情況使美國國會在華盛頓總統否決漢密爾頓法50年後,重又接受了漢密爾頓法,並於1851年開始在美國實際使用。

相關詞條

熱門詞條

聯絡我們