書籍信息
作者: | 歐陽光中 姚允龍 周淵 編著 | ||
定價: | 68.00元 | 頁數: | 384頁 |
ISBN: | ISBN7-309-03570-4/O.305 | 字數: | 921千字 |
開本: | 小16 開 | 裝幀: | 平裝 |
出版日期: | 2003年10月 |
內容簡介
本書是作者在20世紀90年代初編寫的同名教材的基礎上,結合教學實踐,進行了更為全面的探索和改革,經過了大量的教學研究,並參閱了國內外最新出版的教材後編寫的.全書體系結構的安排充分考慮了教學效果的需要,而且增加了現代數學分析的一些方法和內容.為了幫助讀者深入理解有關的概念和方法,行文中不時穿插了許多啟發讀者思考的練習,每章後還附有精選的習題.為了方便讀者使用本書,在書末提供了較為詳細的習題解答.本書主要內容是極限理論、實數系基本理論、一元微積分學、級數論、多元微積分學、曲線曲面積分、含參變數積分以及Lebesgue積分初步等.
本書適用於數學、統計學、計算機科學、管理科學等專業學生作為數學分析課程的教材,可以作為相應專業學生報考研究生的輔導書或參考書,也可以作為其他科技人員自學數學分析的讀本.
圖書目錄
目 錄
第十六章 Euclid空間上的點集拓撲
16.1 Euclid空間上點集拓撲的基本概念
16.2 Euclid空間上點集拓撲的基本定理
第十七章 Euclid空間上映射的極限和連續
17.1 多元函式的極限和連續
17.2 Euclid空間上的映射
17.3 連續映射
第十八章 偏導數
18.1 偏導數和全微分
18.2 鏈式法則
第十九章 隱函式存在定理和隱函式求導法
19.1 隱函式的求導法
19.2 隱函式存在定理
第二十章 偏導數的套用
20.1 偏導數在幾何上的套用
20.2 方嚮導數和梯度
20.3 Taylor公式
20.4 極值
20.5 Logrange乘子法
20.6 向量值函式的全導數
第二十一章 重積分
21.1 矩形上的二重積分
21.2 有界集上的二重積分
21.3 二重積分的變數代換及曲面的面積
21.4 三重積分、n重積分的例子
第二十二章 廣義重積分
22.1 無界集上的廣義重積分
22.2 無界函式的重積分
第二十三章 曲線積分
23.1 第一類曲線積分
23.2 第二類曲線積分
23.3 Green公式
23.4 Green定理
第二十四章 曲面積分
24.1 第一類曲面積分
24.2 第二類曲面積分
24.3 Gauss公式
24.4 Stokes公式
24.5 場論初步
第二十五章 含參變數的積分
25.1 含參變數的常義積分
25,2 含參變數的廣義積分
25.3 B函式和 函式
第二十六章 Lebesgue積分
26.1 可測函式
26.2 若干預備定理
26.3 Lebesgue積分
26.4(L)積分存在的充分必要條件
26.5 三大極限定理
26.6 可測集及其測度
26.7 Fubini定理
練習及習題解答