內容介紹
《射頻電路和射頻積體電路設計中的關鍵課題》總共十二章,涵蓋六個關鍵性的課題:1)阻抗匹配;2)射頻接地;3)單端和差分線路;4)誤差分析;5)展望射頻積體電路設計;6)射頻電路的基本參數和指標。射頻電路設計中最大的特點是阻抗匹配。沒有阻抗匹配的電路設計就不是射頻電路設計。阻抗匹配也是射頻電路設計和數碼電路設計的主要差別之處。由於它的重要性, 《射頻電路和射頻積體電路設計中的關鍵課題》的第一章和第二章比較詳細地討論了這一關鍵性課題。其餘的章節是在射頻電路設計中最需要的基本知識,包括:什麼是射頻電路的基本參數?為什麼目前在射頻和射頻積體電路設計中出現從單端轉化為差分結構的趨勢?射頻積體電路設計的主要難題是什麼?如何克服這些障礙? 在射頻電路設計中,射頻電路單元性能的好壞往往取決於射頻接地的成功與否。射頻電路的誤差分析則關係到產品合格率,而產品合格率是一間公司的生命線。
《射頻電路和射頻積體電路設計中的關鍵課題》有兩個特色。
首先,在已出版了的大多數射頻電路和射頻積體電路設計的書中,其內容是討論一個個射頻電路單元,譬如,低噪聲放大器,混頻器,功率放大器, 壓控振蕩器,頻率綜合器。因此,可以把它們歸類為縱向論述的書。《射頻電路和射頻積體電路設計中的關鍵課題》則不是討論一個個射頻電路單元, 而是著重論述和強調在射頻電路和射積體電路設計中共同的關鍵性課題,因此,這是一本橫向論述的書。其次,儘管有些內容是引自出版了的書刊和文獻。在本講座中不少內容是引自《射頻電路和射頻積體電路設計中的關鍵課題》作者的設計和工作報告。
《射頻電路和射頻積體電路設計中的關鍵課題》可作為以下讀者在射頻電路和射頻積體電路的設計,研究和學習中的參考書:
射頻電路和射頻積體電路設計工程師,測試工程師,系統工程師和經理;
射頻電路和射頻積體電路的有關研究人員;
射頻電路和射頻積體電路有關專業的大學本科生,研究生和教授。
作者介紹
Richard Chi-Hsi Li,male, was born in NanAn,QuanZhou ,Fujian,China .He graduated in the Physics Department of FuDan Unversity,Shanghai,China in 1985.From 1958 to 1973 .he and been working for the Institute of Geophysics ,Chineseacademy and the University of China Science and Technology,Beijing, China.作品目錄
Chapter 1 Importance of Impedance Matching1.1 Difference between RF and Digital Circuit Design
1.1.1 Case 1: Digital Circuits at Low Data Rate
1.1.2 Case 2: Digital Circuits at High Data Rate
1.2 Significance of Impedance Matching
1.2.1 Power Transportation from a Source to a Load
1.2.2 Maximizing of Power Transportation without Phase Shift
1.2.3 Conjugate Impedance Matching and Voltage Reflection Coefficient
1.2.4 Impedance Matching Networ
1.3 Problems due to Unmatched Status of Impedance
1.3.1 General Expression of Power Transportation
1.3.2 Power Instability and Additional Power Los
1.3.3 Additional Distortion and Quasi-Noise
1.3.4 Power Measurement
1.3.5 Power Transportation and Voltage Transportatio
1.3.6 Burning of a Transistor
References
Chapter 2 Impedance Matching
2.1 Impedance Measured by Small Signal
2.1.1 Impedance Measured by S Parameter Measurement
2.1.2 The Smith Chart: Impedance and Admittance Coordinatio
2.1.3 Accuracy of Smith Chartl
2.1.4 Relationship between the Impedance in Series and in Parallel
2.2 Impedance Measured by Large Signal
2.3 Impedance Matching
2.3.1 One Part Matching Network
2.3.2 Recognition of Regions in a Smith Chart
2.3.3 Two Parts Matching Network
2.3.4 Two Parts Upward and Downward Impedance Transformer
2.3.5 Three Parts Matching Network and Impedance Transformer
2.3.5.1 Topology Limitation of Two Parts Matching Network
2.3.5.2 Π Type Matching Network
2.3.5.3 T Type Matching Network
2.4 Some Useful Schemes for Impedance Matching
2.4.1 Designs and Tests when ZL is not 50 Ω
2.4.2 Conversion between“T” and “Π” Type Matching Network
2.4.3 Parts in a Matching Network
2.4.4 Impedance Matching between Power Transportation Units
2.4.5 Impedance Matching for a Mixer
References
Chapter 3 RF Grounding
3.1 A True Story
3.2 Three Components for RF Grounding
3.2.1 “Zero” Capacitors
3.2.2 Micro Strip Line
3.2.3 RF Cable
3.3 Examples of RF grounding
3.3.1 Test PCB
3.3.1.1 Small Test PCB
3.3.1.1.1 Basic Types of Test PCB
3.3.1.1.2 RF Grounding with a Rectngular Metallic Frame
3.3.1.1.3 An Example
3.3.1.2 Large Test PCB
3.3.1.2.1 RF Grounding by “Zero” Chip Capacitors
3.3.1.2.2 RF Grounding by a Runner or a Cable with Half or Quarter Wavelength
3.3.2 Isolation between Input and Output in a Mixer or an Up-converter
3.3.3 Calibration for Network Analyzer
3.4 RF Grounding for Reduction of Return Current Coupling
3.4.1 A Circuit Built by Discrete Parts on a PCB
3.4.2 RFICs
References
Chapter 4 Equivalent Circuits of Passive Chip Parts
4.1 Modeling of Passive Chip Parts
4.2 Characterizing of Passive Chip Parts by Network Analyzer
4.3 Extraction from the Measurement by Network Analyzer
4.3.1 Chip Capacitor
4.3.2 Chip Inductor
4.3.3 Chip Resistor
4.4 Summary
References
Chapter 5 Single-ended Stage and Differential Pair
5.1 Basic Single-ended Stage
5.1.1 General Description
5.1.2 Small Signal Model of a Bipolar Transistor
5.1.2.1 Impedance of a CE (Common Emitter) Device
5.1.2.2 Impedance of a CB (Common Base) Device
5.1.2.3 Impedance of a CC (Common Collector) Device
5.1.2.4 Comparison between CE, CB, and CC Device
5.1.3 Small-signal Model ofa MOSFET
5.1.3.1 Impedance of a CS (Common Source) Device
5.1.3.2 Impedance ofa CG (Common Gate) Device
5.1.3.3 Impedance of a CD (Common Drain) Device
5.1.3.4 Comparison between CS, CG, and CD Device
5.2 Differential Pair
5.2.1 DC Transfer Characteristic
5.2.1.1 DC Transfer Characteristic of a Bipolar Differential Pair
5.2.1.2 DC Transfer Characteristic of a CMOS Differential Pair
5.2.2 Small Signal Characteristic
5.2.3 Improvement of CMRR
5.2.4 Increase of Voltage Swing
5.2.5 Cancellation of Interference
5.2.6 Noise in a Differential Pair
5.3 Apparent Difference between Single-ended Stage and Differential Pair
5.4 DC Offset
5.4.1 DC Offset in a Single-ended Device
5.4.2 Zero DC Offset in a Pseudo-Differential Pair
5.4.3 Why "Zero" IF or Direct Conversion
5.4.4 DC Offset Cancellation
5.4.4.1 "Chopping" Mixer
5.4.4.2 DC Offset Calibration
5.4.4.3 Hardware Schemes
References
Chapter 6 Balun
6.1 Coaxial Cable Balun
6.2 Ring Micro Strip Line Balun
6.3 Transformer Balun
6.4 Transformer Balun Composed by Two Stacked 22 Transformers
6.5 LCBalun
References
Chapter 7 Tolerance Analysis
7.1 Importance of Tolerance Analysis
7.2 Fundamentals of Tolerance Analysis
7.2.1 Tolerance and Normal Distribution
7.2.2 6a, Cp, and Cp,
7.2.3 Yield Rate and DPU
7.2.4 Poisson Distribution
7.3 An Approach to 6a Design and Production
7.4 An Example: A Tunable Filter Design
7.4.1 Description of the Tunable Filter Design
7.4.2 Monte-Carlo Analysis
7.5 Appendix: Table of the Normal Distribution
References
Chapter 8 Prospect of RFIC Design269
Chapter 9 Noise, Gain, and Sensitivity of a Receiver317
Chapter 10 Non-linearity and Spurious Products339
Chapter 11 Cascaded Equations and System Analysis 358
Chapter 12 From Analog to Digital Communication System376