一元可積函式
可積的條件
(1)可積的必要條件
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
如果函式 在閉區間 上可積,則 是 上的有界函式。
(2)有界函式可積的充分必要條件
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
①上和、下和的定義 設 是閉區間 上的有界函式,T是 的一個分割,記
![可積函式類](/img/5/e8d/wZwpmL0gzNyEDO1cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzLxAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/c/5dc/wZwpmL1YTO0gDOxYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
則稱和數
![可積函式類](/img/e/046/wZwpmL3UDM1IDNyUjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzL4QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/6/c6a/wZwpmLwQTMwMjMwYDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzLwEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cc5/wZwpmL4QzN2AjN5cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzL3QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
分別是 在 上對應於分割T的上和和下和,或稱為達布上和與達布下和,分別記為 與 。
② 有界函式可積的充分必要條件
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設 是閉區間 上的有界函式,則下述條件都是 在 上可積的充分必要條件:
![可積函式類](/img/1/cc0/wZwpmL1YzM3IzN0ATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL3IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/0/cdf/wZwpmL3gzN2kzN2QjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzLzgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![可積函式類](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
對任意 ,存在 的一個分割T,使得
![可積函式類](/img/e/362/wZwpmLyMTOyADMzYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/c/e29/wZwpmL2YDO4cTOyUTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1UzLyczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![可積函式類](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
對任意 ,存在 的一個分割T,使得
![可積函式類](/img/f/e8b/wZwpmL4QDMzMTN1cTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3UzL0MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/8/f0d/wZwpmLzgTM5kTN0gjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4YzL2czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
其中 。
一元可積函式類
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(1)在閉區間 上的連續函式 在上可積。
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(2)在閉區間 上只有有限個間斷點的有界函式在 上可積。
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3)在閉區間上單調的函式在 上可積。
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(4)如果函式是 上的有界函式,並且它的間斷點所構成的集合只有有限個聚點,則 在 上可積。
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/e/bc6/wZwpmL3UDO1IzM5IjN5ADN0UTMyITNykTO0EDMwAjMwUzLyYzLzgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(5)如果函式是上的有界函式,並且對於任意 ,總可找出總長不超過 的有限個開區間,把 的全部間斷點覆蓋住,則 在 上可積。
![可積函式類](/img/e/a8c/wZwpmLxMjN3kDO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(6)在 上可積函式的和、差、乘積仍可積。
例
證明黎曼函式
![可積函式類](/img/5/32d/wZwpmL3ADO3czNycTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3UzL0QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/b/50b/wZwpmLxcTM4IDO0QTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
在區間 上可積。
![可積函式類](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/b/50b/wZwpmLxcTM4IDO0QTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/d/8e7/wZwpmLyMjMygDMyYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL0MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/3/69e/wZwpmL1AjN2ITN4QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/f/d03/wZwpmL0ITMwYTM5QTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL2IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/b/50b/wZwpmLxcTM4IDO0QTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/c/e7c/wZwpmLwADM0UzN5gjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4YzL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/2/a12/wZwpmLyAjNxgTOwYDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzLxYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/3/f4e/wZwpmLzgzN1UDO0MTNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzUzL0EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![可積函式類](/img/e/cd3/wZwpmLygzMwMDNyYzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czL1YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/8/932/wZwpmLyIzMykjN1cDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3QzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/8/a22/wZwpmL2MDO4QjNwcDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzLyEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![可積函式類](/img/a/585/wZwpmLyUjN0gzN1IjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyYzLwAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/a/b22/wZwpmL0ITO3cDNwITMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyEzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/6/c65/wZwpmL3MTO3QTN1UjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/1/c48/wZwpmL2cjN5ADOycDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzL1EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/6/da7/wZwpmLwczM3ATO1cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzL0gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![可積函式類](/img/0/749/wZwpmL2IDN1EDNzADOwYjN1UTM1QDN5MjM5ADMwAjMwUzLwgzLxYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/f/cd1/wZwpmLxUjN1QjNykTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/d/856/wZwpmL2ITNwkTN2cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
證 任給 ,在 上使得 的有理點 只有有限個,設它們為 。現對 作分割 ,使 ,並把T中所有小區間分為 和 兩類。其中 為含有 中點的所有小區間,這類小區間的個數 (當所有 恰好都是T的分割點時才有 );而 為 中所有其餘不含 中點的小區間。由於 在 上的振幅 ,於是
![可積函式類](/img/0/68b/wZwpmLwQDOykDM4MjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzYzL2czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/0/007/wZwpmLxcTNyAzNzkzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5czL0AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/f/738/wZwpmL0UTOxkTM4cjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3YzL3MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
而在上的振幅,於是
![可積函式類](/img/e/944/wZwpmL3MTN0kzMyUjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
把這兩部分結合起來,便證得
![可積函式類](/img/5/599/wZwpmLxEDM1ETN5cjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3YzL2gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![可積函式類](/img/b/50b/wZwpmLxcTM4IDO0QTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
即在上可積。
二元可積函式
可積的條件
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1)函式在上可積的必要條件是:在上有界。
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/a/325/wZwpmL2czMzMTO3QjN0kTO0UTMyITNykTO0EDMwAjMwUzL0YzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)函式在上的可積的充分必要條件是:對於任意,存在一個分割T,使得
![可積函式類](/img/8/2b2/wZwpmLyYjNzkzN2MzNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzczLyQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/2/265/wZwpmL2UDN4ATN2UTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL3gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/023/wZwpmL2UTOyEjMzQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中是在上的振幅(即上、下確界之差)。
二元可積函式類
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1)在上連續的二元函式在上可積。
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![可積函式類](/img/1/84e/wZwpmLzMzNycDNxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![可積函式類](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)如果函式在上有界,並且它們的間斷點落在有限光滑曲線段上,則在上可積。