化工AMPS

19世紀末,從丙烯醯氯與氨首次合成了丙烯醯胺。 生物法製取丙烯醯胺。 AMPS(丙烯醯胺)的生產方法:

AMPS

全名:2-丙烯醯胺-2-甲基丙磺酸
英文名:1-Acrylanmido-2-methylpropanesulfonic acid
●(1) 分子量和分子式:Molecular Weight & Molecular Structure
M=207.2 C7H13NSO4
●(2)性質:
是強酸,在水溶液中其pH取決於它的濃度。其鈉鹽在水中為中性。在25℃時,100克水可溶解150克本品,100克二甲基甲醯胺(DMF)可溶解大於100克本品。30%乙醇中本品最大溶解度為30%。其餘溶劑對它溶解度勻很小。它極易吸水,乾燥的AMPS在室溫下很穩定,不會自聚合,但它在水溶液中很易聚合。其在水溶液中水解很慢,本品鈉鹽在pH=9的水溶液一個月內不水解。
●(3)用途:
本品均聚物或丙烯酸共聚低分子量聚電解質,是當前水處理阻垢分解劑中阻止磷酸鈣、碳酸鈣、鋅鹽、鐵、粘泥最好的分散劑。紡織上作為漿料,它加入合成纖維中,由於引入磺酸基可改善織物吸濕性。本品均聚和共聚物可改善油井中油流動狀況,提高產量。
●(4)包裝和儲存條件:
20KG紙袋內襯塑膠袋。產品宜存放在通風乾燥庫房內。

合成

合成簡史

19世紀末,從丙烯醯氯與氨首次合成了丙烯醯胺。1954年,美國氰氨公司採用丙烯腈硫酸水解工藝進行工業生產。1972年,日本三井東壓化學公司首先建立了骨架銅(見金屬催化劑)催化丙烯腈水合制丙烯醯胺的工業裝置,此後各國相繼開發了不同類型的催化劑,採用此項工藝進行工業生產。80年代,日本日東化學工業公司實現了用生物催化劑由丙烯腈制丙烯醯胺的工業生產。

硫酸水合法

丙烯腈和水在硫酸存在下水解成丙烯醯胺的硫酸鹽,然後用液氨中和生成丙烯醯胺和硫酸銨:
CH2=CHCN+H2O+H2SO4
─→CH2=CHCONH2·H2SO4
CH2=CHCONH2·H2SO4+2NH3
─→CH2=CHCONH2+(NH4)2SO4
此法的缺點是副產大量價值低廉、肥效不高的硫酸銨,又存在嚴重的硫酸腐蝕和污染等問題。

催化水合法

丙烯腈與水在銅系催化劑的作用下,於70~120℃、0.4MPa壓力下進行液相水合反應。
CH2=CH-CN+H2O─→CH2=CHCONH2反應後濾去催化劑,回收未反應的丙烯腈,丙烯醯胺水溶液經濃縮、冷卻得丙烯醯胺結晶。該法工藝流程簡單,丙烯醯胺的選擇性和收率可達98%以上。

生化法

生物法製取丙烯醯胺。系將丙烯腈、原料水和固定化生物催化劑調配成水合溶液.催化反應後分離出廢催化劑就可得到丙烯醯胺產品 其特點是:在常溫常壓下反應.設備簡單,操作安全;酶的特異性能使選擇性極高.無副反應。採用J-1菌種時.反應溫度為5~15℃,pH為7~8,反應區丙烯腈質量分數為1% 2%,丙烯腈轉化率為99.99%,丙烯醯胺選擇性為99.98%.反應器出口丙烯醯胺質量分數接近50%:失活的酶催化劑排出系統外的量小於產品的0.1% :無需離子交換處理,使分離精製操作大為簡化:產品濃度高.無需提濃操作:整個過程操作簡便,利於小規模生產。
生化法技術最早由日本日東化學公司於1985年實現工業化生產。規模為4 000 t/a 1991年已達1.4萬t/a規模。
微生物法丙烯醯胺開創了國內生物法生產大宗化工產品、材料的先河,突破了國內高相對分子質量、超高相對分子質量聚丙烯醯胺的生產技術,並拓寬了其套用領域。從產品純度上看,化學法丙烯醯胺中含有微量銅離子和其他金屬離子.反應活性受到一定的影響 而微生物法丙烯醯胺則不存在這個問題.反應活性非常高.而反應活性決定了用丙烯醯胺做衍生物的反應速度和產率由於產品純度高.因而聚合度高.特別適合於生產“三次採油”用聚丙烯醯胺 另外.從成本上看。僅原料消耗一項。微生物法就具有很大優勢.丙烯腈單耗為0.76 t/t。而化學法為0.82 t/t。特別是萬噸級以上規模,其成本優勢將更加明顯。可以說,微生物法從根本上“打倒” 了化學法從長遠來看.微生物法肯定會取代化學法.這只是時間的問題。

丙烯醯胺毒性

急性毒性

急性毒性試驗結果表明,大鼠、小鼠、豚鼠和兔的丙烯醯胺經口LD50為150-180 mg/kg,屬中等毒性物質。

神經和生殖發育毒性

大量的動物試驗研究表明丙烯醯胺主要引起神經毒性;此外,為生殖、發育毒性。神經毒性作用主要為周圍神經退行性變化和腦中涉及學習、記憶和其他認知功能部位的退行性變;生殖毒性作用表現為雄性大鼠精子數目和活力下降及形態改變和生育能力下降。大鼠90天餵養試驗,以神經系統形態改變為終點,最大未觀察到有害作用的劑量(NOAEL)為0.2 mg/kg bw/天。大鼠生殖和發育毒性試驗的NOAEL為2 mg/kg bw/天。

遺傳毒性

丙烯醯胺在體內和體外試驗均表現有致突變作用,可引起哺乳動物體細胞和生殖細胞的基因突變和染色體異常,如微核形成、姐妹染色單體交換、多倍體、非整倍體和其他有絲分裂異常等,顯性致死試驗陽性。並證明丙烯醯胺的代謝產物環氧丙醯胺是其主要致突變活性物質。

致癌性

動物試驗研究發現,丙烯醯胺可致大鼠多種器官腫瘤,包括乳腺、甲狀腺、睪丸、腎上腺、中樞神經、口腔、子宮、腦下垂體等。國際癌症研究機構(IARC) 1994年對其致癌性進行了評價,將丙烯醯胺列為2類致癌物(2A)即人類可能致癌物,其主要依據為丙烯醯胺在動物和人體均可代謝轉化為其致癌活性代謝產物環氧丙醯胺。

生產方法

AMPS(丙烯醯胺)的生產方法:
方法一:水解法
水解法製得的丙烯醯胺,其丙烯酸鹽鏈節在大分子鏈上的分布是無規則的,它占大分子鏈上所有鏈節數的摩爾百分比即為水解度。共聚法相比,一般水解法製備的產物水溶性去屑因子(HD)不高,低於30%,理論上HD大於70%的產物應通過共聚法製取,該法對水解溫度和事件有一定要求,同時水解過程中易發生大分子降解。
方法二:水溶液聚合反應
水溶液聚合反應時把反應單體及引發劑溶解在水中進行的聚合反應。該作法簡單、環境污染少且聚合物產率高,易獲得高相對分子質量聚合物,是聚丙烯醯胺工業生產最早採用的方法,而且一直是聚丙烯醯胺工業生產的主要方法。目前,對水溶液聚合研究已經比較深入。
方法三:反相乳液聚合
反相乳液聚合及反相懸浮聚合之前都需要製備反相膠體分散體系,即將單體水溶液藉助攪拌分散或乳化劑的油相中,形成水/油(W/0)非均相分散體系,然後加入引發劑進行游離基聚合。一般反相乳液聚合使用油溶性引發劑,多為陰離子型自由基引發劑和非離子自由基引發劑,而反相懸浮聚合多使用費水溶性引發劑,如過硫酸鹽等。 有關AM/AA反相乳液聚合機理的成核機理目前存在兩種看法:膠束成核及單體液滴成核。其動力學與典型正乳液聚合動力學有較大差別。
方法四:反相懸浮聚合
反相懸浮聚合時近10年發展起來的實現水溶性聚合物工業化生產的理想方法,1982年Di-monie利用電導、NMR、電鏡研究了AM反相懸浮聚合。
方法五:其他聚合方法

相關搜尋

熱門詞條

聯絡我們