定義
若級數的各項符號正負相間,即形如
![交錯級數](/img/c/392/wZwpmL0YzMzEjMzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
的級數叫做交錯級數。
換句話說:交錯級數是正項和負項交替出現的級數。
注意:上式中-1的次數也可以為n,即奇數項為負,偶數項為正。
收斂性判別
萊布尼茨判別法
定理內容
![交錯級數](/img/b/065/wZwpmL4ETN0IzM1MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果交錯級數 滿足以下兩個條件:
![交錯級數](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(1)數列單調遞減;
![交錯級數](/img/9/c02/wZwpmL2UzN2gDM0ITOxMzM1UTM1QDN5MjM5ADMwAjMwUzLykzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(2) ;
![交錯級數](/img/e/f05/wZwpmLxYzM5QDM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL0QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
那么該交錯級數收斂,且其和滿足。
證明過程
![交錯級數](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
考慮交錯級數的部分和數列,它的奇數項和偶數項分別為:
![交錯級數](/img/0/4c4/wZwpmL0YDM2IzN5gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czLyQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![交錯級數](/img/0/4c8/wZwpmLxgjM4ITOzMDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL2UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![交錯級數](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
∵單調遞減
∴上述二式中括弧內的每一項均為非負數
![交錯級數](/img/1/597/wZwpmL2YjMxYzMzAzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/0/b05/wZwpmL4YDO2YDNwMTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL0IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
∴單調遞減,單調遞增。
![交錯級數](/img/b/1f3/wZwpmLzgjMzMzM1EzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxczL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/8/8db/wZwpmL0ATN1MjM4MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
∵,且
![交錯級數](/img/4/eef/wZwpmLyQTMwgzMxQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
∴是一個閉區間套
![交錯級數](/img/7/462/wZwpmL4gjN4kzM2IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
由閉區間套定理,存在唯一實數,並且
![交錯級數](/img/c/a34/wZwpmL1gzN2YTM4UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![交錯級數](/img/e/ed6/wZwpmL2ETM1kDM5EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLxIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
∴
![交錯級數](/img/f/a76/wZwpmL2ATOygzN0YjM0IDN0UTMyITNykTO0EDMwAjMwUzL2IzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![交錯級數](/img/b/065/wZwpmL4ETN0IzM1MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
故數列收斂,即級數收斂。
適用範圍
![交錯級數](/img/8/8cd/wZwpmLwETN5YDOzIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注意,萊布尼茨定理所給出的條件(1)是充分非必要條件,即對非單調遞減的數列{u},交錯級數既可能收斂,也可能發散。
換句話說,萊布尼茨定理僅僅給出了判斷交錯級數收斂的充分條件,卻沒有給出判斷交錯級數發散的條件;同時,如果交錯級數滿足該定理的條件,也無法判斷級數是絕對收斂還是條件收斂。
推論(餘項估計)
![交錯級數](/img/b/065/wZwpmL4ETN0IzM1MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![交錯級數](/img/b/cbb/wZwpmL3QzN2UDNwIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果交錯級數滿足萊布尼茨判別法的兩個條件,則該級數的餘項估計式為:。
典例
例1(交錯調和級數)
![交錯級數](/img/1/7cf/wZwpmL2cTMxgzN4gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL4UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/1/c41/wZwpmLzgzM0IzMzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czL1IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![交錯級數](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/9/c02/wZwpmL2UzN2gDM0ITOxMzM1UTM1QDN5MjM5ADMwAjMwUzLykzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
知,易得數列單調遞減,且,即該數列滿足萊布尼茨判別法,故交錯調和級數是收斂的。
例2
![交錯級數](/img/7/f9c/wZwpmL4IDN2MzN2AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
判定級數的斂散性。
解:已知該級數是交錯的,我們試圖驗證它滿足萊布尼茨判別法的條件(1)和(2)。
![交錯級數](/img/e/8bc/wZwpmL3IzMxQjM0IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLxczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/6/b1a/wZwpmL0MjM3UzN1ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzL3YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/3/947/wZwpmL4IjM0gTN3gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![交錯級數](/img/f/e2c/wZwpmLxMjM1gTM0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![交錯級數](/img/c/4ed/wZwpmLwQzMwEzM1IzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL4gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![交錯級數](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![交錯級數](/img/0/688/wZwpmL0MDNwgDM4MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![交錯級數](/img/e/35f/wZwpmL1UTOwATO3IDN2EzM1UTM1QDN5MjM5ADMwAjMwUzLyQzLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![交錯級數](/img/b/759/wZwpmL2QjNxMTNxMzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/5/18b/wZwpmLyYDOzkTN4czN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3czL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![交錯級數](/img/7/bd8/wZwpmL3czN0gjN1IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLxQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
數列遞減並不顯然。但是,如果我們考慮與它相應的函式,我們發現。當時,,因此在上遞減,這表明當時,,且,該不等式可直接驗證,故條件(1)滿足。
![交錯級數](/img/4/63b/wZwpmLwIDMxIDO0IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLzYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![交錯級數](/img/a/f8a/wZwpmLygTN2QDO1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL4IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
條件(2)由洛必達法則易證:,故有,條件(2)滿足。
因此,由萊布尼茨判別法可得,該級數是收斂的。