《量子金融》

《量子金融》

近年來,金融數學的發展離不開隨機微積分,而《量子金融(英文版)》提供了一種完全獨立於該方法的新方法,將量子力學和量子場論中的數學公式和概念運用到期貨理論和利率模型中,重點講述路徑積分。相應的得到了不少新的預期結果。《量子金融(英文版)》主要介紹了金融基本概念:金融基礎;衍生證券;有限自由度系統:哈密頓體系和股票期貨;路徑積分和股票期貨;隨機利率模型的哈密頓體系和路徑積分;利率模型的量子場論:利率遠期契約的量子場論;經驗利率遠期契約和場論模型;國債衍生品場論;利率遠期契約和場論哈密頓體系結論。

基本信息

目錄

Foreword
Preface
Acknowledgments
1Synopsis
PartIFundamentalconceptsoffinance
2Introductiontofinance
2.1Efficientmarket:randomevolutionofsecurities
2.2Financialmarkets
2.3Riskandreturn
2.4Timevalueofmoney
2.5Noarbitrage,martingalesandrisk-neutralmeasure
2.6Hedging
2.7Forwardinterestrates:fixed-incomesecurities
2.8Summary
3Derivativesecurities
3.1Forwardandfuturescontracts
3.2Options
3.3Stochasticdifferentialequation
3.4Itocalculus
3.5Black-Scholesequation:hedgedportfolio
3.6Stockpricewithstochasticvolatility
3.7Merton——Garmanequation
3.8Summary
3.9Appendix:Solutionforstochasticvolatilitywithp=0
PartⅡSystemswithfinitenumberofdegreesoffreedom
4Hamiltoniansandstockoptions
4.1Essentialsofquantummechanics
4.2Statespace:completenessequation
4.3Operators:Hamiltonian
4.4Biack-ScholesandMerton-GarmanHamiltonians
4.5Pricingkernelforoptions
4.6Eigenfunctionsolutionofthepricingkernel
4.7Hamiltonianformulationofthemartingalecondition
4.8Potentialsinoptionpricing
4.9Hamiltonianandbarrieroptions
4.10Summary
4.11Appendix:Two-statequantumsystem(Qubit
4.12Appendix:Hamiltonianinquantummechanics
4.13Appendix:Down-and-outbarrieroptionspricingkernel
4.14Appendix:Double-knock-outbarrieroptionspricingkernel
4.15Appendix:SchrodingerandBlack-Scholesequations
5Pathintegralsandstockoptions
5.1Lagrangianandactionforthepricingkernel
5.2Black-ScholesLagrangian
5.3Pathintegralsforpath-dependentoptions
5.4Actionforoption-pricingHamiltonian
5.5Pathintegralforthesimpleharmonicoscillator
5.6Lagrangianforstockpricewithstochasticvolatility
5.7Pricingkernelforstockpricewithstochasticvolatility
5.8Summary
5.9Appendix:Path-integralquantummechanics
5.10Appendix:Heisenbergsuncertaintyprincipleinfinance
5.11Appendix:Pathintegrationoverstockprice
5.12Appendix:Generatingfunctionforstochasticvolatility
5.13Appendix:Momentsofstockpriceandstochasticvolatility
5.14Appendix:Lagrangianforarbitraryat
5.15Appendix:Pathintegrationoverstockpriceforarbitraryat
5.16Appendix:MonteCarloalgorithmforstochasticvolatility
5.17Appendix:Mertonstheoremforstochasticvolatility
6StochasticinterestratesHamiltoniansandpathintegrals
6.1SpotinterestrateHamiltonianandLagrangian
6.2Vasicekmodelspathintegral
6.3Heath-Jarrow-Morton(HJM)modelspathintegral
6.4MartingaleconditionintheHJMmodel
6.5PricingofTreasuryBondfuturesintheHJMmodel
6.6PricingofTreasuryBondoptionintheHJMmodel
6.7Summary
6.8Appendix:SpotinterestrateFokker-PlanckHamiltonian
6.9Appendix:Affinespotinterestratemodels
6.10Appendix:Black-Karasinskispotratemodel
6.11Appendix:Black-KarasinskispotrateHamiltonian
6.12Appendix:Quantummechanicalspotratemodels
PartⅢQuantumfieldtheoryofinterestratesmodels
7Quantumfieldtheoryofforwardinterestrates
7.1Quantumfieldtheory
7.2Forwardinterestratesaction
7.3Fieldtheoryactionforlinearforwardrates
7.4ForwardinterestratesvelocityquantumfieldA(t,x)
7.5propagatorforlinearforwardrates
7.6Martingaleconditionandrisk-neutralmeasure
7.7Changeofnumeraire
7.8Nonlinearforwardinterestrates
7.9Lagrangianfornonlinearforwardrates
7.10Stochasticvolatility:functionoftheforwardrates
7.11Stochasticvolatility:anindependentquantumfield
7.12Summary
7.13Appendix:HJMlimitofthefieldtheory
7.14Appendix:Variantsoftherigidpropagator
7.15Appendix:Stiffpropagator
7.16Appendix:Psychologicalfuturetime
7.17Appendix:Generatingfunctionalforforwardrates
7.18Appendix:Latticefieldtheoryofforwardrates
7.19Appendix:ActionS,forchangeofnumeraire
8Empiricalforwardinterestratesandfieldtheorymodels
8.1Eurodollarmarket
8.2Marketdataandassumptionsusedforthestudy
8.3Correlationfunctionsoftheforwardratesmodels
8.4Empiricalcorrelationstructureoftheforwardrates
8.5Empiricalpropertiesoftheforwardrates
8.6Constantrigidityfieldtheorymodelanditsvariants
8.7Stifffieldtheorymodel
8.8Summary
8.9Appendix:Curvatureforstiffcorrelator
9FieldtheoryofTreasurybondsderivativesandhedging
9.1FuturesforTreasuryBonds
9.2OptionpricingforTreasuryBonds
9.3GREEKSfortheEuropeanbondoption
9.4Pricinganinterestratecap
9.5FieldtheoryhedgingofTreasuryBonds
9.6StochasticdeltahedgingofTreasuryBonds
9.7StochastichedgingofTreasuryBonds:minimizingvariance
9.8Empiricalanalysisofinstantaneoushedging
9.9Finitetimehedging
9.10Empiricalresultsforfinitetimehedging
9.11Summary
9.12Appendix:Conditionalprobabilities
9,13Appendix:ConditionalprobabilityofTreasuryBonds
9.14Appendix:HJMlimitofhedgingfunctions
9.15Appendix:StochastichedgingwithTreasuryBonds
9.16Appendix:Stochastichedgingwithfuturescontracts
9.17Appendix:HJMlimitofthehedgeparameters
10FieldtheoryHamiltonianofforwardinterestrates
10.1ForwardinterestratesHamiltonian
10.2Statespacefortheforwardinterestrates
10.3TreasuryBondstatevectors
10.4Hamiltonianforlinearandnonlinearforwardrates
10.5Hamiltonianforforwardrateswithstochasticvolatility
10.6Hamiltonianformulationofthemartingalecondition
10.7Martingalecondition:linearandnonlinearforwardrates
10.8Martingalecondition:forwardrateswithstochasticvolatility
10.9Nonlinearchangeofnumeraire
10.10Summary
10.11Appendix:Propagatorforstochasticvolatility
10.12Appendix:EffectivelinearHamiltonian
10.13Appendix:HamiltonianderivationofEuropeanbondoption
11Conclusions
AMathematicalbackground
A.1Probabilitydistribution
A.2DiracDeltafunction
A.3gaussianintegration
A.4Whitenoise
A.5TheLangevinEquation
A.6Fundamentaltheoremoffinance
A.7Evaluationofthepropagator
Briefglossaryoffinancialterms
Briefglossaryofphysicsterms
Listofmainsymbols
References
Index

前言

Financialmarketshaveundergonetremendousgrowthanddramaticchangesinthepasttwodecades,withthevolumeofdailytradingincurrencymarketshittingoveratrillionUSdollarsandhundredsofbillionsofdollarsinbondandstockmarkets.Deregulationandglobalizationhaveledtolarge-scalecapitalflows;thishasraisednewproblemsforfinanceaswellashasfurtherspurredcompetitionamongbanksandfinancialinstitutions.
Theresultingbooms,bubblesandbustsoftheglobalfinancialmarketsnowdirectlyaffectthelivesofhundredsofmillionsofpeople,aswaswitnessedduringthe1998EastAsianfinancialcrisis.
Theprinciplesofbankingandfinancearefairlywellestablished[16,76,87]andthechallengeistoapplytheseprinciplesinanincreasinglycomplicatedenvironment.Theimmensegrowthoffinancialmarkets,theexistenceofvastquantitiesoffinancialdataandthegrowingcomplexityofthemarket,bothinvolumeandsophistication,hasmadetheuseofpowerfulmathematicalandcomputationaltoolsinfinanceanecessity.Inordertomeettheneedsofcustomers,complexfinancialinstrumentshavebeencreated;theseinstrumentsdemandadvancedvaluationandriskassessmentmodelsandsystemsthatquantifythereturnsandrisksforinvestorsandfinancialinstitutions[63,100].
Thewidespreaduseinfinanceofstochasticcalculusandofpartialdifferentialequationsreflectsthetraditionalpresenceofprobabilistsandappliedmathematiciansinthisfield.Thelastfewyearshasseenanincreasinginterestoftheoreticalphysicistsintheproblemsofappliedandtheoreticalfinance.InadditiontotheastCorpusofliteratureontheapplicationofstochasticcalculustofinance,conceptsfromtheoreticalphysicshavebeenfindingincreasingapplicationinboththeoreticalandappliedfinance.Theinfluxofideasfromtheoreticalphysics,asexpressedforexamplein[18]and[69],hasaddedawholecollectionofnewmathematicalandcomputationaltechniquestofinance,fromthemethodsofclassicalandquantumphysicstotheuseofpathintegration,statisticalmechanicsandsoon.Thisbookispartoftheon-goingprocessofapplyingideasfromphysicstofinance.
·查看全部>>

相關詞條

相關搜尋

熱門詞條

聯絡我們