簡介
進氣口,空氣管道或類似結構的開口,它利用飛機向前運動而蒐集空氣,引導到發動機或通風機里去。渦輪噴氣發動機壓氣機進口流速的馬赫數約為0.4,對流場的不均勻性有嚴格限制。在飛行中,進氣道要實現高速氣流的減速增壓,將氣流的動能轉變為壓力能。隨著飛行速度的增加,進氣道的增壓作用越來越大,在超音速飛行時的增壓作用可大大超過壓氣機,所以超音速飛機進氣道對提高飛行性能有重要的作用。定義
定義1:空氣進入壓氣機進口法蘭的管道。所屬學科:電力(一級學科);汽輪機、燃氣輪機(二級學科)
定義2:空氣噴氣發動機所需空氣的進口和通道。
所屬學科:航空科技(一級學科);航空器(二級學科)
亞音速進氣口
進氣口前緣較為鈍圓,以避免低速起飛時進口處氣流分離。內部通道多為擴散形。在最大速度或巡航狀態下,進入氣流的減速增壓過程大部分在進口外面完成,通道內的流體損失不大,因而有較高的效率。亞音速進氣道在超音速工作時,進氣口前會產生脫體正激波,超音速氣流經過正激波減為亞音速,這時能量損失增大(激波損失)。激波前速度越大,損失也越大。但是,亞音速進氣道構造簡單、重量輕,在馬赫數為1.6以下的低超音速飛機上也廣為採用。超音速進氣口
超音速進氣道通過多個較弱的斜激波實現超音速氣流的減速。超音速進氣道分為外壓式、內壓式和混合式三類。①外壓式進氣道:在進口前裝有中心錐或斜板,以形成斜激波減速,降低進口正激波的強度,從而提高進氣減速增壓的效率。外壓式進氣道的超音速減速全部在進氣口外完成,進氣口內通道基本上是亞音速擴散段。按進氣口前形成激波的數目不同又有2波系、3波系和多波系之分。外壓式進氣道的缺點是阻力大;②內壓式進氣道:為收縮擴散形管道,超音速氣流的減速增壓全在進口以內實現。設計狀態下,氣流在收縮段內不斷減速至喉部恰為音速,在擴散段內繼續減到低亞音速。內壓式進氣道效率高、阻力小,但非設計狀態性能不好,起動困難,在飛機上未見採用;③混合式進氣道:是內外壓式的折衷。可調進氣口
簡介
在超音速條件下,不可調進氣道只在設計狀態下能與發動機協調工作,這時進氣道處於最佳臨界狀態。在非設計狀態下,譬如改變飛行速度,進氣道與發動機的工作可能不協調。當發動機需要空氣量超過進氣道通過能力時,進氣道處於低效率的超臨界狀態。當發動機需要空氣量低於進氣道通過能力時,進氣道將處於亞臨界溢流狀態。過分的亞臨界狀態使阻力增加,並引起進氣道喘振。為了使進氣道在非設計狀態下也能與發動機協調工作(即進氣道與發動機匹配),提高效能,廣泛套用可調進氣道。常用的方法是調節喉部面積和斜板角度,使進氣道的通過能力與發動機的要求一致。另外,在亞音速擴散通道處設有放氣門,將多餘的空氣放掉,不使進氣道處於亞臨界溢流狀態。同時,為了解決起飛狀態進氣口面積過小的問題,還設定有在低速能被吸開的輔助進氣口。類型
DSI進氣口 DSI進氣口就是在戰機進氣口前部機身處設計一塊突起,可以對空氣進行預壓縮,並同時吹除影響發動機吸氣的附面層,也有利於隱形。進氣口裡面有可以調節的進氣量多少的裝置,這種進氣口對製造工藝要求較高。如你所說,殲-20用的就是DSI進氣口。加萊特進氣道利用了超音速激波增壓原理,有利於進行大馬赫數的高速飛行,這種進氣道對戰機的氣動設計要求很高,F-22用的就是這種,這也是F-22進氣口比殲-20進氣口大的原因。固定進氣口就是指不能對發動機進氣量進行調節的進氣口。 DSI和加萊特技術含量較高,設計和製作工藝也比較複雜。這兩種進氣各有所長,主要看對戰機性能的要求,比如F-22追求超音速巡航就用加萊特,可以保持戰機在持續高速飛行狀態下的穩定。二維可調式 殲-10與“幼獅”的另外一處重大不同在於進氣道。“幼獅”的進氣道與F-16類似,為固定幾何形狀。而殲-10採用的是帶中心激波錐的二維可調式進氣道,這種帶調節板的進氣道布局與F-4“鬼怪”Ⅱ有些類似。只是殲-10將“鬼怪”的進氣道平移至機腹下,由調節板(位置在邊界層分離板的後方)構成進氣道的前部,這為發動機提供了不同飛行狀態所需的氣流,更加適合高性能空空作戰。此外,可調節進氣道所增加的高效整流壓縮能力(在1.5馬赫時為5%,在1.8馬赫增加至15%,在2馬赫時為25~30%)極大地提高了飛機超音速飛行時的發動機推力,從而使飛機獲得更好的爬升和高速性能。這種進氣道布局的不足主要包括隱身效果欠佳(這也是所有機腹進氣道布局飛機的通病)、重量偏大且結構複雜(F-16為此增重80~100公斤)和生產費用增加,同時調節板的動力和調節系統還加大了飛機的維護負擔。
適合超音速飛行的氣動布局、強勁的發動機和可調節式進氣道使殲-10最大速度能夠達到2.2馬赫,大於“幼獅”宣稱的1.8馬赫。殲-10的高超性能集中於空空作戰,因此無論是執行空防還是截擊任務都將是一把利器。