簡介
定義
自攻牙螺絲 自攻牙螺絲雖然已使用很久,一般也知道怎麼製作,但對於各規範所規定之標準及要求,也許並不是很清楚,在此僅藉由收集來之規範,整理出一份適合大家閱讀,使能對自攻螺絲有多一層之認識.自攻螺絲是在金屬或非金屬材料之預鑽孔中自行攻鑽出所配合陰螺紋之一種有螺紋扣件.具有高拉力,單件,單邊組合特色.由於其自行成型或攻出其配合螺紋,因此在組合上具有高防松能力,且可以裝卸.在小形螺絲上其尺寸、螺紋型式、頭型、攻鑽性能在工程用途上幾乎無可限量.
發展
自1914年自攻螺絲開始商品化.第一次之設計─主要源自木螺絲─系屬可滲碳鋼錐尾A型螺紋成型螺絲.當時主要之用途是用在空調系統導管上鐵皮之接合,因此又叫做鐵皮螺絲.經過80餘年之發展,共可分為四個時期─螺紋成型、螺紋切削、螺紋滾成及自鑽。
1.螺紋成型自攻螺絲(Thread Forming Tapping Screws)─系直接由鐵皮螺絲髮展而來, 螺紋成型自攻螺絲使用時須預先鑽孔,再將螺絲旋入孔中,強力擠出配合陰螺紋,而原來在陰螺紋位置上之材料將被擠到陽螺紋之間,此謂之螺紋成型自攻螺絲.僅可適用於薄且具有可塑性之材料,因此又發展出;螺紋切削自攻螺絲(Thread Cutting Tapping Screws)─在螺紋之尾端切割出一或多道之切削口,使能在旋入預鑽孔時,利用螺絲尾部及牙部以類似螺絲攻的方式切削出配合陰螺紋.它可以用在厚板,比較堅硬或易碎等不易塑造之材料,.
2.螺紋滾成自攻螺絲(Thread Rolling Tapping Screws)─三角牙自攻螺絲,又稱為Type TT(Type Tai 目前仍有專利)系基於成型螺絲攻之原理髮展而成,螺紋滾成自攻螺絲具有特殊設計之螺紋及尾端使螺絲可以在斷續之壓力下自行滾成配合之陰螺紋.同時在孔周圍之材料可以更輕易的填補自攻螺絲螺紋及牙底之空間,由於其磨擦力較螺紋成型自攻螺絲為小,因此可以使用在更厚之材料上,旋轉所需之扭矩更好控制,且組合後強度更高.螺紋滾成自攻螺絲其工程標準定義比成型或切削自攻螺絲在材料,熱處理,強度上之定義更高且更為明確,使得螺紋滾成自攻螺絲成為真正的”構造用”扣件.
3.鑽尾自攻螺絲(Self Drilling Tapping Screws)─又稱為Tec,在組裝自攻螺絲之所有過程中,最耗費成本的是預鑽孔的準備.自攻螺絲的使用,必需先鑽孔.而且孔徑也必需限制.無需預鑽孔而在某些方面可以節省成本.這就是集鑽, 攻, 旋緊於一次作業的鑽尾自攻螺絲.鑽尾螺絲的表面硬度及心部硬度比一般自攻螺絲高一點,這是因為鑽尾螺絲多了一個鑽孔之作業,另外鑽尾螺絲尚需作貫穿試驗,用以測試螺絲可以在規定時間內鑽孔並攻出螺紋.上述為四種主要自攻螺絲之設計及發展過程,另有兩種為特殊螺紋設計之螺絲,第一種為;高低牙自攻螺絲(High – Low Tapping Screws)─使用在塑膠或其他低密度材料。雙螺紋設計,高螺紋( 牙部外徑較大)具有更平更尖銳螺紋角為30度之螺紋型式.低螺紋(牙部外徑較小)具有一60度之螺紋角,牙高只有高螺紋的一半.高低螺紋之組合設計降低了旋轉扭矩,改善了拉出強度,大幅降低了組合工件破裂的危險性另一種用在建築工業上乾墻(Drywall)之組裝用途上.,具有此類螺紋設計之自攻螺絲特別適合於塑膠,零件板及木頭.
4.雙螺紋自鑽尾喇叭頭自攻螺絲(Twin Lead Self Drilling Point Tapping Screws) ─組裝時可以輕易旋入乾墻,在鋼鐵牙條上自鑽一洞並攻出配合之陰螺紋.其喇叭頭具凹入之承受面可以在旋入時不至於破壞到壁紙或石膏表面.大多數之自攻螺絲均屬於商業用途, 例如當自攻螺絲以組合螺絲( SEMS )提供時,可以提供更緊密之服務.而螺絲如具有粗細螺紋特殊設計者則系著眼於組裝後之防松.
標準
自攻牙螺絲圖紙 ANSI/ASME B18.6.4─Thread Forming And Thread Cutting Tapping Screws And Metallic Drive Screws (Inch Series)
SAE J933─Mechanical and Quality Requirements For Tapping Screws
SAE J81─Thread Rolling Screws
SAE J1237─Metric Thread Rolling Screws
SAE J78─Steel Self-Drilling Tapping Screws
FIP 1000─Tapping Screws Performance Specifications
DIN 7500─Thread Rolling Screws For ISO Metric Screws Thread
DIN 7504─Self-Drilling Tapping Screws Dimensions, Requirements And Testing
ISO 2702─Heat-Treated Steel Tapping Mechanical Properties
JIS B1055─Mechanical Properties For Heat-Treated Steel and Stainless Tapping Screws
螺紋型式
標準自攻螺絲辨識字元,包括代表螺紋及尾部型狀之符號.自攻螺絲有一個或兩個代表螺紋的字元用以代表機械螺紋或寬螺紋( SPACED ).如帶有辨識字元”B”代表為寬螺紋螺絲. 無”B”者代表為機械螺紋.尾端代表字元用以區分自攻螺絲為螺紋成型,切削,滾成或自鑽.
機械螺紋與英美統一螺紋一樣具有60度之螺紋角及粗,細螺紋相同之螺距,如果在拆卸後螺絲遺失或有需要的話,可以用標準螺紋扣件代替之.
寬螺紋具有一60度之螺紋角但其螺距則較寬,而因其寬螺距之故,其螺紋較陡因此其螺紋導程比機械螺紋為大.另有一種專使用於塑膠上的螺紋,其螺紋角度為48度,俗稱PT牙螺絲.
螺紋成型自攻螺絲A,AB, B, BP, C等型式目前已逐漸為螺紋滾成自攻螺絲所取代,故在新設計中不建議使用. AB, B, BP不同處僅在尾部形狀, AB有一個螺紋錐尾, B有一個鈍尾, BP有一個無螺紋之錐尾,尖尾中心進入預鑽孔並開始使螺紋成型.螺紋切削自攻螺絲有BF, BP, D, F, G及T等形式, BF, BP為寬螺紋, 其餘為機械螺紋.
辨識字元不同點在於其切削尾.每一種切削尾都有一個可以收集切削下廢料之形狀. 如果自攻螺絲旋入盲孔( 不貫通之孔 ),則其碎片將殘留且密封於孔底. 但如攻入貫通孔時, 則廢料將掉在工件的另一邊. 所以在選擇本型式自攻螺絲時必需考慮及此, 廢料可能會造成污染, 掉進運轉中之零件或使電子基板無法運作.
所有螺紋滾成自攻螺絲均為機械螺紋, 與英美統一螺紋粗牙一樣,請參閱SAE J81規定.公制螺紋請參閱SAE J1237及DIN7500規定.
鑽尾自攻螺絲有切削寬螺紋BSD及機械螺紋CSD兩種型式.另尚有特殊螺紋型式,包含高低雙螺紋,同時各種攻鑽尾亦適用.因為攻鑽尾及螺紋性質,鑽尾螺絲不適用於盲孔作業.在組裝自鑽螺絲時,鑽尾需完全穿透工件後方可進行螺紋之切削或成型,所以通常會有一些碎屑,如果又使用螺紋切削型螺紋,更免不了有碎屑.因此實用上必需考慮此一問題.有關於BSD及CSD鑽尾螺絲請參閱SAE J78及DIN7504(寬螺紋)之規定.
自攻螺絲螺紋最重要的是牙部外徑,如果過大,會導致組裝扭矩加大,如果過小,螺紋剪斷強度會降低,而此一特性可以很輕易地由分厘卡或卡規測定而出,除了此一特性外,自攻螺絲不需任何螺紋量測,其理甚明,配合陰螺紋乃自攻螺絲攻鑽而成,可以自行配合,因此無需任何配合上之量測,雖然如此,但製造上仍須注意ANAI/ASME B18.6.4的規定:C.D.F.G和T型:其本身尺寸不得低於2A螺紋之最小有效徑,也不可大於最大牙外徑.所以有時客戶會依此規定要求.當要求時,由於有割溝的限制,環規無法順利檢驗,在螺紋的量測上須使用螺紋指示規.另有兩項自攻螺絲螺紋特性值得一提的是 :
螺紋成型之自攻螺絲由於其配合螺紋是擠壓成型,因此螺絲之牙底徑必需略小於預鑽孔, 以便有空間容納工件上被擠壓而出之材料.而且螺紋之剪斷強度也會較大.螺紋切削之自攻螺絲由於其配合螺紋是切削成型,因此螺絲之牙底徑必需略等於預鑽孔,而其預置扭矩較小,破斷強度及拉出強度也比較低.
頭型
緊固件一端製成增大形狀之部分形成的承面. ANSI/ASME B18.6.4對自攻螺絲規定了13種標準之頭型. 請參照B18.6.4第1.2段之規定.對螺紋成型及螺紋切削自攻螺絲而言,13種中之5種 - 平頂埋頭( Flat Countersunk ), 扁圓埋頭( Oval Countersunk ), 盤頭( Pan ), 六角及六角華絲頭( Hex and Hex washer Head )最為重要,這五種頭型占了所有自攻螺絲幾乎90%以上, 使用自攻螺絲應先考慮此五種頭型.
另五種其他型式為平頂凹承面( Flat Undercut ), 平頂整緣( Flat Trim), 扁圓凹承面( Oval Undercut ), 扁圓整緣( Oval Trim )及圓柱頭( 崗山頭Fillister )為比較次要頭型, 而香菇頭( Truss ), 圓頭( Round )及100度平頂埋頭為新設計所不取,蓋其功用可為其他頭型所取代,盤頭可取代香菇頭及圓頭, 82度平頂埋頭可取代100度平頂埋頭.
螺紋滾成自攻螺絲頭型之選擇與上同, 使用主要考慮為平頂,扁圓頂,盤頭,六角頭及六角華司頭五種.
鑽尾螺絲以平頂,扁圓頂,盤頭及六角華司頭最為普遍,六角頭之所以不使用,實因在鑽孔過程中,需施壓力於旋緊工具上以支撐工具進行鑽孔作業.因此都使用十字平頂,扁圓頂,盤頭或六角華司頭.
雖然美國國家標準只規定13種標準頭型, 但其他頭型在商業用途上依然可使用, 如乾墻螺絲所使用之喇叭頭,薄餅頭及其他依設計使用之特殊頭型,製造商可依其他資料製造.
承面 - 支撐或定位結件的部分,通常通過承面來裝卸螺絲.承面有兩種基本類型,平型承面(與結件桿部垂直)和錐型承面(與結件桿部形成角度)前者在多數情況下為承受作用於結件的負荷力而服務, 後者除延續平型承面相同的功用外,還可用於定位.有錐形承面的結件通常所指的是埋頭頭型.頭型的不同套用,初步取決於承面的功能及頭部傳送轉力矩的能力.
常用平型承面的螺栓和螺栓類型
平頭 : 可替代圓頭和蘑菇頭的新設計,頭部低直徑大,頭部周邊圓周沿接表示特性的高型邊緣,使其對於高強度的扭矩發揮驅動作用,與穴頭在頭型方面有微小差別.
圓頭 : 是過去最常用的頭型.
頂柱頭 : 標準的扁圓頂柱頭的直徑較圓頭小,但由於槽深的關係因而比較高,較小的直徑使作用於小面積的壓力增大,可緊密組合於凸緣及增高的表層.由於在為保證集中性而設定的鑽孔模具中打頭,它們可以被成功的套用於內鑽孔的穴中.
圓頂寬邊頭 : 因頭下內切束縛和減弱了對於電線組成部分的磨損,因而最普遍的套用於電器及收錄機中,為中低頭型以其較充分的承面提供了較有吸引力的設計類型.
大圓頭 : 也稱橢圓頂寬邊頭,是一種低型,巧妙設計的大直徑頭型.當附加作用的組合公差允許時,可用於覆蓋具有較大直徑的金屬板洞.也可建議用平頭替代.
一字槽頭型 : 這是一種創造性的防松頭型,一旦組合不易解除,但卻可用一般標準的螺絲起子起動.這項簡單的設計通常可以解決組合中的成本問題,增加生產數量,為製造過程創造驚人的經濟利益.
六角承穴頭 : 一種具扳手頭高兼有六角頭型尺寸的結件. 六角形完全由反孔的模具冷間成型,頭部頂端有一處明顯的凹陷.
六角承穴華司頭 : 如標準的六角承穴頭型, 但同時在頭部基底有一華司面起到保護裝配的完成, 以免扳手損壞. 有時候事物的作用遠比外觀重要.
六角頭 : 這是一種扭矩作用於六角頭部的標準類型,有將銳利的尖角修整到接近公差範圍的特點.可被推薦於一般商業用,也可適用於各種標準的模式和各種螺紋直徑.因其必需的第二道工序使其比一般六角承穴貴.
承窩頭 : 圓柱體頭部內有較深的六角承穴, 常見的有高強度承窩頭的Cap Screw. 較深的承穴使高轉力矩作用於結件上.
十二點 : 高圓柱體頭型上布十二個外點,有華司面承受施予結件的負荷.由於設計上為提供高度的扭矩帶來便利, 因此常用於高強度的結件.
梅花頭 : 一中等高度的六角小葉型頭型兼帶華司承面.它的設計包括直面與華司面垂直,扭矩承面在圓形突出的部分(小葉中)傳輸力矩.這樣的設計最高程度的利用了外驅動系統,使力矩能夠發揮到極至.高轉力矩的傳輸沒有改變頭部自身.
常用錐形承面的螺栓和螺栓類型
平頂埋頭 - 標準角度為80~82度,用於表面需緊密接合的緊固件.承面部位可提供良好的中心性.
扁圓埋頭 - 全稱為”Oval Countersunk”,這種頭形類似於標準的平頂埋頭,但套用更廣泛.另外,一個圓形, 整齊的上表面, 設計上也更吸引人.
小平頂埋頭 - 和標準的平頂埋頭, 扁圓埋頭一樣, 頭角為的80~82度, 只是承頭部位要小1/3, 用於簡易產品或者特別短的長度.說得詳細點,它用於標準的埋頭孔,而且非常適用於緊密配合件.
平頂埋頭(埋頭100度) – 這種特殊的平頂埋頭螺絲正逐漸套用於要求緊密配合的表面, 建議用在軟的材質上以分解壓力於更大和更少角度的表面,特別適用於鋁,軟塑膠等.
驅動系統
驅動系統,它的功能在於驅動及傳送力矩將緊固件結合及鬆開.在整個系統中,扭矩的充分傳送是使得緊固件變得實用最重要的一點.對有螺紋的緊固件來說,有兩種基本的驅動系統, 一個是外部驅動系統,一個是內部驅動系統.外部驅動系統其驅動要素是在整個頭部,扳手在外面工作.而內部驅動系統其驅動要素是在緊固件的頭部,扳手在裏面操作.一般而言, 內部驅動型對螺絲而言允許較高之扭矩.
外部驅動系統的頭形 : 六角頭, 六角驅動系統, 十二棱頭驅動系統等.
一字槽是最古老的一種槽型,對所有的驅動系統來說這也是最普遍的,割溝製造方式有兩種 : 一種是在完整頭型之螺絲上以割溝機械修出割溝,另一種則是在成型鍛造時一次成型.一次成型割溝比較經濟,因為它無需二次加工,但在某些方面仍有問題,例如六角頭或六角華司頭使用直接成型, 則由於凹陷( Indented )處之故將使割溝深難以測量,更嚴重 的是會減少螺絲與起子的接合面,直接成型用在圓頭時,接合面不變,但是成型壓力將迫使頭徑加大,特別是在割溝處兩側,在某些頭型使用直接成型時,頭部尺寸相當難以控制.
割溝為凹陷的一種型式,對所有頭型除了平頂整緣及扁圓頂整圓外都是標準型式,對每種頭型之割溝尺寸規定在B18.6.4. 割溝特別適合於手工組合,但不適合半自動或全自動裝配.這種驅動系統的效果取決於頭部的高度和平整度,像平頭和崗山頭,這是因為頭高越大,割槽越深,而頭部越平整,驅動力就會更靠近頭部的外緣,扭矩更有效.若在實際套用時,要求更高的扭矩,剪下是一個問題.即使是較深的結合,在驅動起子和一字槽之間也很難找到很好的配合.而目前存在於驅動器和緊固件之間的空隙,會引起不垂直性.當驅動器在外力作用下沒有垂直時,起子會損壞一字槽的邊緣而引起剪下. 頭部越小或者越圓,這種現象越容易發生.
一字槽不太適用於快速安裝,例如裝配線上,驅動起子會從槽的一端滑到另一端, 如果驅動起子的中心基本和緊固件的中心對齊,則驅動起子有效.如果沒有對齊,那肯定會導致頭部損壞,同樣,驅動起子也可能旋落到表面,直接作用在緊固件上,引起損壞.隨著扭矩加大的需要,也要求載入以防止剪下.
一字槽不存在製作問題,但在大多數情況下,也確實需要第二次割槽成形,驅動起子的有效性目前並沒有問題.一字槽最適用於那些不要求高扭矩的地方,尤其是那些需要在許多不同的環境下裝卸和調整的,最好的例子就是化油器上的調整螺絲.同樣這種槽型也常用在易消耗的,需修理和拆卸的緊固件上,例如 : 割草機, 旋轉設備等等.